brettkoonce.com/talks
may 7th, 2019

http://brettkoonce.com/talks

background, squad, seq2seq
bidaf, drga, fastfusion/sru, qanet
squad v2, transformer, ulmfit

bert w/ squad v1, next steps

» stanford question answer dataset

* question + context —> answer span

* 100k questions, human F1: 91.2%

Dataset

Article / Paragraph

Q: How many provinces did the Ottoman
empire contain in the 17th century?

A: 32

Article: Ottoman Empire

Paragraph: ... At the beginning of the 17th century the em-
pire contained 32 provinces and numerous vassal states. Some
of these were later absorbed into the Ottoman Empire, while
others were granted various types of autonomy during the
course of centuries.

A <EOS> W

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

Output Layer

Start

End

Dense + Softmax

LSTM + Softmax

Modeling Layer

mo

Attention Flow
Layer

94 P

Query2Context and Context2Query

Attention

Contextual
Embed Layer

Word Embed
Layer

Character
Embed Layer

Query2Context

Softmax

Word

Character

Embedding Embedding

Context

Query

GLOVE

Char-CNN

Figure 1: BiDirectional Attention Flow Model (best viewed in color)

Dense layer + BiLinearSeqAttention + BiLinearSeqgAttention +
Softmax Softmax Softmax

y Y B I Y - -

I BiLSTM / ConvNet

» ~

LinearSegAttention
Dense layer +
Softmax 1

B B

Modeling

[BiLSTM / ConvNet
Layer

-

BiLSTM / ConvNet] l BiLSTM / ConvNet

e B o »

Bidirectional Attention
Attention Flow Layer

B

MatchAttention

- -~

[BiLSTM / ConvNet] [BiLSTM / ConvNet \ Contextual
B k ” - Layer

I Word Emb ‘ Highway Network l l Word Emb | Highway Network ‘

T

Embedding Layer

Textual
Char ConvNet Char Conijet Word & Character Features of Word Emb Word Emb

-~

Char Emb

Query Word Query Character Passage Word Passage Character Query Word Passage Word
Tokens Tokens Tokens Tokens Tokens Tokens

Figure 5: Schematic layouts of the BiDAF (/eft) and DrQA (right) architectures. We propose to
replace all occurrences of BILSTMs with diluted ConvNet structures.

Fully-Aware Fusion Network .ﬁm

Fully-Aware Self-Boosted Fusion —{10 - 1} 4

NNN . NRR

- \\
N N 3 N q !
T

3 @ ~
3 Context Understanding Question Understanding
The above can be used to capture long range info.
NNE - SR e
Fully-Aware Multi-level Fusion 7-Level Fully-Aware Attention

Context Understanding Question Understanding

:Understanding HII III
2 1

r
. High-level III III
Concept T |
. Low-level I:I |:| I:I I:l |:| D :
" Concept |
| WI [T
Context Ouestion 3-Level Fully-Aware Attention

Figure 4: An illustration of FusionNet architecture. Each upward arrow represents one layer of Bil.-
STM. Each circle to the right is a detailed illustration of the corresponding component in FusionNet.
Circle 1: Fully-aware attention between C' and Q. Illustration of Equation (C1) in Section 3.1L
Circle 2: Concatenate all concepts in C' with multi-level Q information, then pass through BiILSTM.
Mlustration of Equation (C2) in Section 3.1.

Circle 3: Fully-aware attention on the context C itself. Illustration of Equation (C3) in Section B.H
Circle 4: Concatenate the understanding vector of C' with self-attention information, then pass
through BiLSTM. Illustration of Equation (C4) in Section 3.1.

0O 20 40 60 80 100 120 0O 50 100 150 200 250 300 50 100 150 200 250 300

TREC MPQA SST

cuDNN LSTM
SRU
CNN

20 40 60 80 100 120 25 50 75 100 125 150 500 1000 1500 2000

Figure 3: Mean validation accuracies (y-axis) and standard deviations of the CNN, 2-layer LSTM and
2-layer SRU models. We plot the curves of the first 100 epochs. X-axis 1s the training time used (in

seconds). Timings are performed on NVIDIA GeForce GTX 1070 GPU, Intel Core 17-7700K Processor
and cuDNN 7003.

(Start Probability)
*

C)
T

(Linear)

T

(Concat)

/(

Encoder Blocks

T

Stacked Model
Encoder Blocks

(Stacked Model

Stacked Model
Encoder Blocks

1

)

(End Probability

(Softmax

)

T

(Linear

)

T

)

C

Context-Query Attention

)

(Stacked Embedding
Encoder Blocks

?
(Embedding)

T
O00O

Context

(Stacked Embedding
Encoder Blocks

T
(Embedding)

T
O00O

Question

One Encoder
Block

=

(Feedfoward layer)

2
(Layernorm)

—>

|

+

(Self-attention)

2
(Layernorm)

— |

~

A
> (P Repeat

(¢

v)

*

(Layernorm)

|\

Encoding)

\ (Position

J

T

Figure 1: An overview of the QANet architecture (left) which has several Encoder Blocks. We
use the same Encoder Block (right) throughout the model, only varying the number of convolutional
layers for each block. We use layernorm and residual connection between every layer in the Encoder
Block. We also share weights of the context and question encoder, and of the three output encoders.
A positional encoding is added to the input at the beginning of each encoder layer consisting of sin
and cos functions at varying wavelengths, as defined in (Vaswani et al., 2017a). Each sub-layer after
the positional encoding (one of convolution, self-attention, or feed-forward-net) inside the encoder
structure is wrapped inside a residual block.

Submission Model Time to 0.75 Cost Hardware Framework

u
° maximum: S
|

FastFusionNet

T Wu et al. (Cornell, SayMosaic, 1 NVidia GCTX 1080 Ti Pytorch
Google) v0.3.1
source
DrQA
- .
7 R Yang, Facebook ParlAl, Brett -
¢ b I d af. 6 % s e ‘7::0:; i * 1 NVidia 2080 RTX (dev box) Pytorch 1.0.0
|
source
e TensorFlow
Apr 2018 Google 1TPUv2 vis
source ’
* D A: 78% e
r - (0] Dec 2018 Runai Yang, F. 7(‘;::;’(ParlAl, Brett 1T4/GCP Pytorch 1.0.0

source

DrQA
Dec 2018 Runqi Yang, Facebook ParlAl, Brett 1P4/GCP Pytorch 1.0.0
Koonce

source

 fusionnet +
sru: 82%

DrQA
Rungi Yang, Facebook ParlAl, Brett
Sep2018 unqr yang, ‘7::0:; arial Bre 1V100/ AWS p3.2xlarge Pytorch 0.4.1

source

DrQA
Sep2018 RunqiYang, f: f;::;k ParlAl, Brett 1K80/AWS p2.xlarge Pytorch 0.4.1

source

BiDAF

o] o Oct 2017 Stanford DAWN 1K80/61GB/4 CPU (Amazon EC2 TensorFlow
| o [p2.xlarge]) v1.2

source

Leaderboard

SQUAD2.0 tests the ability of a system to not only answer reading comprehension
questions, but also abstain when presented with a question that cannot be answered
based on the provided paragraph. How will your system compare to humans on this task?

Rank Model EM F1

Human Performance
Stanford University
(Rajpurkar & Jia et al. '18)

BERT + DAE + AoA (ensemble)
Mar 20, 2019 Joint Laboratory of HIT and iFLYTEK Research

BERT + ConvLSTM + MTL + Verifier (ensemble)
Mar 15, 2019 Layer 6 Al

* new version of
dataset

BERT + N-Gram Masking + Synthetic Self-
Mar 05, 2019 Training (ensemble)

Google Al Language
https:/github.com/google-research/bert

SemBERT(ensemble)

o a dve rs a ri a I Apr 13,2019 Shanghai Jiao Tong University

BERT + DAE + AoA (single model)

q u est i o n s (+ 5 0 k) Mar 16, 2019 Joint Laboratory of HIT and iFLYTEK Research

BERT + N-Gram Masking + Synthetic Self-
Mar 05, 2019 Training (single model)

Google Al Language
https:/github.com/google-research/bert

 leaderboard

BERT + MMFT + ADA (ensemble)
Jan 15, 2019 Microsoft Research Asia

BERT + ConvLSTM + MTL + Verifier (single

Mar 13, 2019 model)
Layer 6 Al

1

| Mar 20, 2019
2

| Mar 15,2019
3

| Mar 05,2019
4

| Apr 13, 2019 |
5

| Mar 16,2019
6

| Mar 05,2019
7

[Jan 15, 2019 |
7

| Mar 13, 2019

Output
Probabilities

Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Positional Positional
Encoding e & D e Encoding
Input Output
Embedding Embedding

Outputs
(shifted right)

Attention

W

(a)

Figure 2: Two small improvements to the baseline
model: (a) residual connection, and (b) multi-layer
attention.

Softmax

layer

QN

S
ANS Ay S qp.Lyp <
LRI
< ST N cofecccccccannaas,
N2\ ,

R ‘Q\S X
LSRR

Ve >
Layer 3
N7

<32 V2

Ak
X

Layer 1

Embedding Embedding Embedding
; layer E layer |

4

The gold dollar or gold The best The best scene ever

(a) LM pre-training (b) LM fine-tuning (c) Classifier fine-tuning

Figure 1: ULMFiT consists of three stages: a) The LM 1is trained on a general-domain corpus to capture
general features of the language in different layers. b) The full LM is fine-tuned on target task data using
discriminative fine-tuning (‘Discr’) and slanted triangular learning rates (STLR) to learn task-specific
features. ¢) The classifier is fine-tuned on the target task using gradual unfreezing, ‘Discr’, and STLR to
preserve low-level representations and adapt high-level ones (shaded: unfreezing stages; black: frozen).

BERT (Ours) OpenAl GPT

Figure 1: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAl GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-
to-left LSTM to generate features for downstream tasks. Among three, only BERT representations are jointly
conditioned on both left and right context in all layers.

» accuracy: retrained bert, 88% F1
(~4 hr, t4, huggingface)

+ speed: qanet (tpu-2, <10 min)
» simplicity: runqgi yang, hitvoice/drga

* future: transformer-xi, gpt/gpt-2, miperf

thanks for coming!

