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» stanford question answer dataset

* question + context —> answer span

* 100k questions, human F1: 91.2%

Dataset

Article / Paragraph

Q: How many provinces did the Ottoman
empire contain in the 17th century?

A: 32

Article: Ottoman Empire

Paragraph: ... At the beginning of the 17th century the em-
pire contained 32 provinces and numerous vassal states. Some
of these were later absorbed into the Ottoman Empire, while
others were granted various types of autonomy during the
course of centuries.
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Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.
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Figure 1: BiDirectional Attention Flow Model (best viewed in color)
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Figure 5: Schematic layouts of the BiDAF (/eft) and DrQA (right) architectures. We propose to
replace all occurrences of BILSTMs with diluted ConvNet structures.
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Figure 4: An illustration of FusionNet architecture. Each upward arrow represents one layer of Bil.-
STM. Each circle to the right is a detailed illustration of the corresponding component in FusionNet.
Circle 1: Fully-aware attention between C' and Q. Illustration of Equation (C1) in Section 3.1L
Circle 2: Concatenate all concepts in C' with multi-level Q information, then pass through BiILSTM.
Mlustration of Equation (C2) in Section 3.1.

Circle 3: Fully-aware attention on the context C itself. Illustration of Equation (C3) in Section B.H
Circle 4: Concatenate the understanding vector of C' with self-attention information, then pass
through BiLSTM. Illustration of Equation (C4) in Section 3.1.
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Figure 3: Mean validation accuracies (y-axis) and standard deviations of the CNN, 2-layer LSTM and
2-layer SRU models. We plot the curves of the first 100 epochs. X-axis 1s the training time used (in

seconds). Timings are performed on NVIDIA GeForce GTX 1070 GPU, Intel Core 17-7700K Processor
and cuDNN 7003.
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Figure 1: An overview of the QANet architecture (left) which has several Encoder Blocks. We
use the same Encoder Block (right) throughout the model, only varying the number of convolutional
layers for each block. We use layernorm and residual connection between every layer in the Encoder
Block. We also share weights of the context and question encoder, and of the three output encoders.
A positional encoding is added to the input at the beginning of each encoder layer consisting of sin
and cos functions at varying wavelengths, as defined in (Vaswani et al., 2017a). Each sub-layer after
the positional encoding (one of convolution, self-attention, or feed-forward-net) inside the encoder
structure is wrapped inside a residual block.
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Leaderboard

SQUAD2.0 tests the ability of a system to not only answer reading comprehension
questions, but also abstain when presented with a question that cannot be answered
based on the provided paragraph. How will your system compare to humans on this task?
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Figure 2: Two small improvements to the baseline
model: (a) residual connection, and (b) multi-layer
attention.
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(a) LM pre-training (b) LM fine-tuning (c) Classifier fine-tuning

Figure 1: ULMFiT consists of three stages: a) The LM 1is trained on a general-domain corpus to capture
general features of the language in different layers. b) The full LM is fine-tuned on target task data using
discriminative fine-tuning (‘Discr’) and slanted triangular learning rates (STLR) to learn task-specific
features. ¢) The classifier is fine-tuned on the target task using gradual unfreezing, ‘Discr’, and STLR to
preserve low-level representations and adapt high-level ones (shaded: unfreezing stages; black: frozen).




BERT (Ours) OpenAl GPT

Figure 1: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAl GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-
to-left LSTM to generate features for downstream tasks. Among three, only BERT representations are jointly
conditioned on both left and right context in all layers.




» accuracy: retrained bert, 88% F1
(~4 hr, t4, huggingface)

+ speed: qanet (tpu-2, <10 min)
» simplicity: runqgi yang, hitvoice/drga

* future: transformer-xi, gpt/gpt-2, miperf



thanks for coming!



