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goal: how to get started with machine
learning on google cloud

background/theory
ways to get started
google cloud demos

recap, q+a



intersection of data + statistics +
compute

linear regression, random forests,
gradient boosted trees

high-dimensional data

pca/svd reduction, kernel methods,
feature engineering




 weight*x + bias --> a[X]+b
- activation functions
 can map to infinite data...

+ expensive to build/train!



commoditized compute (cpu/gpu)

big data: # samples, types, resolution

large scale software, commercial
applications

bitter lesson: simple >> complex
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Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the

input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.
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Fig.2: DETR uses a conventional CNN backbone to learn a 2D representation of an
input image. The model flattens it and supplements it with a positional encoding before
passing it into a transformer encoder. A transformer decoder then takes as input a
small fixed number of learned positional embeddings, which we call object queries, and
additionally attends to the encoder output. We pass each output embedding of the
decoder to a shared feed forward network (FFN) that predicts either a detection (class
and bounding box) or a “no object” class.




generative adversarial networks
(2014, stylegan: 2018)

Middle styles
(16% - 32?)

Fine styles
(647 - 1024%)




Adam optimizer

—— Discriminator Real Image Loss
——— Discriminator Fake Image Loss
—— Generate Image Loss
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The network
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[Silver et al. 2017b)

== Reinforcement learning

= Supervised learning
wee AlphaGo Lee
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key to ai: lots of compute power (??)
are humans special?

secrets of mother nature

if ai is possible --> most important
question of our time

ten years ago <----> ten years ahead
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anybody can do this!

can learn basics for free

focus on fundamentals, slowly add
complexity

follow herd, don't try to forge ahead



- pick a framework (tensorflow, pytorch)

- pick a tool (colab, google cloud, self-
host)

» pick a teacher



tensorflow 1 vs 2 --> RIREEIUSENe

model.add(Conv2D(32, kernel _size=(3, 3),
activation='relu’,

use 2.2 . pythOn 3 input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))
model.add(Flatten())

keras model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

coursera + andrew ng

google certificates



 python 3 w/ 1.5 and later

+ jeremy howard + fast.ai

class Net(nn
def  1in
supe

self.
self.
self.
self.
self.
self.

.Module):

it (self):

r(Net, self).__init__ ()

convl = nn.Conv2d(1, 32, 3, 1)
conv2 = nn.Conv2d(32, 64, 3, 1)
dropoutl = nn.Dropout2d(0.25)
dropout2 = nn.Dropout2d(0.5)
fcl = nn.Linear(9216, 128)

fc2 = nn.Linear(128, 10)

forward(self, x):

X
X
X
X
X
X
X
X
X
X
X

self.convl(x)
F.relu(x)
self.conv2(x)
F.relu(x)
F.max_pool2d(x, 2)
self.dropoutl(x)
torch.flatten(x, 1)
self.fcl(x)
F.relu(x)
self.dropout2(x)
self.fc2(x)

output = F.log_softmax(x, dim=1)

return output




other frameworks
jax: numpy --> xla bridge
s4tf + xla: automatic differentiation, types

convolutionalneuralnetworkswithswift.com

* apress, 2020


http://convolutionalneuralnetworkswithswift.com

google colab (notebook) demo

kubeflow/ai notebooks
google cloud tools (rest api endpoints)
deep learning ami

custom vm



machine learning, deep learning
neural network variants
tools/ways to get going

different cloud tools/approaches



thanks for coming!



