intro to machine
learning with google
cloud

brettkoonce.com/talks
june 20th, 2020

http://brettkoonce.com/talks

goal: how to get started with machine
learning on google cloud

background/theory
ways to get started
google cloud demos

recap, q+a

intersection of data + statistics +
compute

linear regression, random forests,
gradient boosted trees

high-dimensional data

pca/svd reduction, kernel methods,
feature engineering

 weight*x + bias --> a[X]+b
- activation functions
 can map to infinite data...

+ expensive to build/train!

commoditized compute (cpu/gpu)

big data: # samples, types, resolution

large scale software, commercial
applications

bitter lesson: simple >> complex

Input Cell Perceptron (P) Feed Forward (FF) Deep Feed Forward (DFF)

. Output Cell — g

Kernel

Deep Convolutional Network (DCN)
() Convolution or Pool

\/\/ \/ \/

XX X | X |

CONV3-64

CONV3-128
CONV3-256

CONV3-512
CONV3-512

Prediction

——

-—

[POOLZ

INPUT LAYER @ @ @ @

HIDDEN LAYER .‘ . ‘
OUTPUT LAYER Q ° Q Q

«ROLLED» «UNROLLED»

A <EOS> W

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the

input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

encoder

I P
lllllll:llll-ll class,
1 1 1T 1T 1 _box |

FFN no
transformer transformer object

encoder decoder class,
FFN box

oooood--gd

|
|
|
|
|
|
|
L

Fig.2: DETR uses a conventional CNN backbone to learn a 2D representation of an
input image. The model flattens it and supplements it with a positional encoding before
passing it into a transformer encoder. A transformer decoder then takes as input a
small fixed number of learned positional embeddings, which we call object queries, and
additionally attends to the encoder output. We pass each output embedding of the
decoder to a shared feed forward network (FFN) that predicts either a detection (class
and bounding box) or a “no object” class.

generative adversarial networks
(2014, stylegan: 2018)

Middle styles
(16% - 32?)

Fine styles
(647 - 1024%)

Adam optimizer

—— Discriminator Real Image Loss
——— Discriminator Fake Image Loss
—— Generate Image Loss

P *ﬁwwwwwwmﬂuMMHMM‘WW

The network

v)
4
2

O

©
>

=~ 4
4

o

=

Input: The game
state (see below)

Fuly connected layer

| Al NN

Rectifier non-Ineanity

1 N NN

Rateh nermaksation

I NEE N

2 convolutional Filters
(1x1) .

T

A residual layer

Al - Ne

Rectifier non-lnearity

! EE - Ee

Skip connection

A

Al NN

Raten normaksation

EEETE- .

256 convelutional
filters (3x3)

"
Rectifier non-lnearty
"

Ratch normalsation

A

256 convaluticnal
fiters (3x3)

T

AGO0: Elo Rating over Training Time (RL vs. SL)

[Silver et al. 2017b)

== Reinforcement learning

= Supervised learning
wee AlphaGo Lee

1 L} A Al

30 40 50 60 70
Training time (h)

Progression of Nash
of AlphaStar League

Training Days

Agent ID

Value Action type

Residual MLP

Value Network

Delay Queued Selected units Target unit Target point
A
J_’{H'n\};i_1';11:“‘11}3"

MLP

--

Core

Deep LSTM

- LR -

Legend

Scalar encoder Entity encoder Spatial encoder

MLP Transformer ResNet Action

Connection
Output —

Neural network Skip .
connection

Baseline features Scalar features Entities Mnhimap~ = " input | cecccce-

key to ai: lots of compute power (??)
are humans special?

secrets of mother nature

if ai is possible --> most important
question of our time

ten years ago <----> ten years ahead

o
L™
Q
&N
-
O
Pad
Q
Q
L0
>
3",
=
@
) -
—
.
L
N
O
-
=

full.”

My brain is

anybody can do this!

can learn basics for free

focus on fundamentals, slowly add
complexity

follow herd, don't try to forge ahead

- pick a framework (tensorflow, pytorch)

- pick a tool (colab, google cloud, self-
host)

» pick a teacher

tensorflow 1 vs 2 --> RIREEIUSENe

model.add(Conv2D(32, kernel _size=(3, 3),
activation='relu’,

use 2.2 . pythOn 3 input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))
model.add(Flatten())

keras model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

coursera + andrew ng

google certificates

 python 3 w/ 1.5 and later

+ jeremy howard + fast.ai

class Net(nn
def 1in
supe

self.
self.
self.
self.
self.
self.

.Module):

it (self):

r(Net, self).__init__ ()

convl = nn.Conv2d(1, 32, 3, 1)
conv2 = nn.Conv2d(32, 64, 3, 1)
dropoutl = nn.Dropout2d(0.25)
dropout2 = nn.Dropout2d(0.5)
fcl = nn.Linear(9216, 128)

fc2 = nn.Linear(128, 10)

forward(self, x):

X
X
X
X
X
X
X
X
X
X
X

self.convl(x)
F.relu(x)
self.conv2(x)
F.relu(x)
F.max_pool2d(x, 2)
self.dropoutl(x)
torch.flatten(x, 1)
self.fcl(x)
F.relu(x)
self.dropout2(x)
self.fc2(x)

output = F.log_softmax(x, dim=1)

return output

other frameworks
jax: numpy --> xla bridge
s4tf + xla: automatic differentiation, types

convolutionalneuralnetworkswithswift.com

* apress, 2020

http://convolutionalneuralnetworkswithswift.com

google colab (notebook) demo

kubeflow/ai notebooks
google cloud tools (rest api endpoints)
deep learning ami

custom vm

machine learning, deep learning
neural network variants
tools/ways to get going

different cloud tools/approaches

thanks for coming!

