
solving go
by brett koonce
february 8, 2018

go: overview

• discuss game, rules

• uct + random rollouts —> MCTS

• MCTS + policy + value —> Alpha Go

• policy + value + self-play —> Alpha Go Zero

• Alpha Go Zero - Go —> Alpha Zero, demo

go: board

go: game/rules
• origin: asia, ~2500 years ago

• 19x19 board (361 squares), fill with stones

• squares + captures —> score (chinese)

• black - 7.5 (komi) > white —> winner (no
draws)

• ~500 moves —> ~1e170 game complexity
(chess: ~1e50, # atoms in universe: ~1e80)

uct (2006)
• multi-armed bandit problem: how do you win most

money from room of slot machines, given X quarters?

• basic idea: explore new machines (policy), calculate
reward of a machine (value)

• ucb: put statistical bound on losses —> maximize gains

random rollouts (2009)
• take current board state, pick candidate move

to explore/evaluate

• alternate adding stones randomly till both
sides cannot play (pass)

• score via chinese rules —> move win/loss
predictor —> update value of candidate move

• uct + random rollouts —> mcts —> solves go!
(minor bug: universe will die of heat death first)

alpha go (2016)

alpha go: fan/lee/master

• take mcts approach, but:

• use policy network to quickly make moves
(test good moves rather than random ones)

• use value network to predict winning odds
(cheaper predictions for faster exploration)

• finally, use mcts to perform deeper
evaluation as needed

policy network
• human games (~150k) + supervised learning —>

policy network (given position, predict next move)

• play games using policy network + MCTS —> more
games (human + computer) —> train again —>
better policy network (e.g. reinforcement learning)

• use policy network to make moves rapidly —>

• 55% accuracy in 3ms, 24% accuracy in 2µs

• policy network alone can defeat many engines*

value network
• from given input state, can we predict who will win,

without performing a rollout simulation?

• build CNN to predict winning probability %

• train: mse between prediction and outcome

• overtrains to input games, so have to relax
network (e.g. rotate/flip games)

• use value network to predict expected win/loss of
moves without rollout (15000x faster)

alpha go: performance

alpha go: zero (2017)
• input a position —> use single network

(combined policy + value) to predict best move
and winning odds —> build game tree

• play games against self (tabula rasa), train
new network to categorize wins/losses and
reduce prediction error

• evaluate new network against old, pick winner

• repeat 700k generations —> master level play

applied-data.science/blog/
alphago-zero-cheat-sheet

http://applied-data.science/blog/alphago-zero-cheat-sheet
http://applied-data.science/blog/alphago-zero-cheat-sheet

alpha go zero: train

rl/sl + resnet/cnn

fuseki

alpha go zero (dec 17)
• generalized version of alpha go approach (no go-

specific knowledge)

• input board state, possible moves, evaluation function
—> generates policy/value networks via self play

• teaches self how to play, improves to master level

tic-tac-toe
• github.com/evg-tyurin/alpha-zero-general

• thanks Surag Nair, Evgeny Tyurin!

• input: board, moves, evaluate

• play games against self, train (alpha zero +
keras/tensorflow) to recognize winners/
minimize losses, evaluate new network, repeat

• demo: play, train, test

http://github.com/evg-tyurin/alpha-zero-general

recap
• mcts (uct + rollouts) “solves” go, but doesn’t scale

• combine expert knowledge (prior games) with
value and policy networks (optimization) to
surpass human players

• a single network randomly initialized can reach
even greater performance via self-play

• this approach generalizes to other domains and is
very human like

what is ai?
• chinese room example

• give beginner a board, rules, have them
practice

• difference between master and beginner:
knows what to seek, what to avoid —> they
have experience

• casablanca: how many moves ahead do you
think?

thanks for coming!

papers
• Reinforcement Learning and Simulation-Based

Search in Computer Go (2009)

• Mastering the game of Go with deep neural
networks and tree search (2016)

• Mastering the game of Go without human
knowledge (2017)

• Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm (2017)

http://papersdb.cs.ualberta.ca/~papersdb/uploaded_files/1029/paper_thesis.pdf
http://papersdb.cs.ualberta.ca/~papersdb/uploaded_files/1029/paper_thesis.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://deepmind.com/documents/119/agz_unformatted_nature.pdf
https://deepmind.com/documents/119/agz_unformatted_nature.pdf
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815

brettkoonce.com
• quarkworks.co

• mobile apps for android and ios

• custom solutions for solving problems on-
device (edge computing)

• keras, tensorflow lite, mobilenets, tf-coreml

• traditional machine learning, analytics

http://brettkoonce.com
http://quarkworks.co

