solving go

by brett koonce
february 8, 2018

go: overview

- discuss game, rules

- uct + random rollouts —> MCTS

- MCTS + policy + value —> Alpha Go
-+ policy + value + self-play —> Alpha Go Zero

-+ Alpha Go Zero - Go —> Alpha Zero, demo

go: game/rules

* origin: asia, ~2500 years ago
- 19x19 board (361 squares), fill with stones
- squares + captures —> score (chinese)

- black - 7.5 (komi) > white —> winner (no
draws)

- ~8500 moves —> ~1e170 game complexity
(chess: ~1e50, # atoms in universe: ~1e80)

uct (2006)

- multi-armed bandit problem: how do you win most

money from room of slot machines, given X quarters?

- basic idea: explore new machines (policy), calculate
reward of a machine (value)

- uchb: put statistical bound on losses —> maximize gains

Selection b Expansion c Evaluation

maxyy Q +u(P)

ETIR I

Q +u(P) %nax

RN

random rollouts (2009)

- take current board state, pick candidate move
to explore/evaluate

- alternate adding stones randomly till both
sides cannot play (pass)

- score via chinese rules —> move win/loss
predictor —> update value of candidate move

- uct + random rollouts —> mcts —> solves go!
(minor bug: universe will die of heat death first)

alpha go (20

n0:01:00]" &4 . 00:00:51'

alpha go: fan/lee/master

- take mcts approach, but:

- use policy network to quickly make moves
(test good moves rather than random ones)

- use value network to predict winning odds
(cheaper predictions for faster exploration)

- finally, use mcts to perform deeper
evaluation as needed

policy network

- human games (~150k) + supervised learning —>
policy network (given position, predict next move)

- play games using policy network + MCTS —> more
games (human + computer) —> train again —>
better policy network (e.g. reinforcement learning)

- use policy network to make moves rapidly —>

- 55% accuracy in 3ms, 24% accuracy in 2us

- policy network alone can defeat many engines*

value network

- from given input state, can we predict who will win,
without performing a rollout simulation?

- build CNN to predict winning probability %
- train: mse between prediction and outcome

- overtrains to input games, so have to relax
network (e.g. rotate/flip games)

- use value network to predict expected win/loss of
moves without rollout (15000x faster)

alpha go: performance

Jnajewy

()]
£
-+

90
o
o
L

0
Rollouts @

usz

Value network @

paingusip
oneyd|y
oneyd|y

Policy network @

au01g Azeun

alpha go: zero (2017)

- Input a position —> use single network
(combined policy + value) to predict best move
and winning odds —> build game tree

- play games against self (tabula rasa), train
new network to categorize wins/losses and
reduce prediction error

- evaluate new network against old, pick winner

- repeat 700k generations —> master level play

lied-data.science/blo
alphaqgo-zero-cheat-shee

The trdining pipeline for AlphaGo Zero consists of three stages, executed in pardllel

SELF PLAY

Create a ‘training set’

The best current player plays 25,000 games against itself
See MCTS section to understand how AlphaGo Zero selects each move

At each move, the following information is stored

T Y

The search probabilities
(from the MCTS)

The game state
(see "What is a Game
State section’)

The winner
(+1if this player won, -1if
this player lost - added once
the game has finished)

RETRAIN NETWORK

Optimise the network weights

A TRAINING LOOP
Sample a mini-batch of 2048 positions from the last 500,000 games

Retrain the current neural network on these positions
- The game states are the input (see ‘Deep Neural Network Architecture’)

Loss function
Compares predictions from the neural network with the search probabiities and actual winner

p Cross-entropy ; I

+

v Mean-squared error Y
+

Regularisation

After every 1,000 training loops, evaluate the network

EVALUATE NETWORK

Test to see if the new network is stronger

Play 400 games between the latest neural network and the current best
neural network

Both players use MCTS to select their moves, with their respective neural
networks to evaluate leaf nodes

Latest player must win 55% of games to be declared the new best player

)4

ALPHAGO ZERO CHEAT SHEET

WHAT IS A ‘GAME STATE"

0 if black stone not here
Current position of 19 x 19 x 17 stack

black’s stones
19

..and for the previous
7 time periods
Current position of

white's stones

..and for the previous

AllTif black to play 7 time periods

All O if white to play

This stack is the input to the deep neural network

~———

_~

http://applied-data.science/blog/alphago-zero-cheat-sheet
http://applied-data.science/blog/alphago-zero-cheat-sheet

The value head

game value for current player

1.1
tanh non-linearity

scalar

Fully connected layer

EE ©- .
EE N-EE

Hidden layer size 256

Rectifier non-linearity

Fuly connected layer

EE - e
HE NN

Batch normdlisation
X AEETE - En

Rectifier non-linearity

1 convolutional filter
(1x1) .
I =
Input

A convolutional layer
EE -Em
Rectifier non-linearity
I EE T-Em

Batch normdlisation

EEETN - .

256 convolutional
filters (3x3)

Input

_

The network learns tabula rasa” (From a blank slate)

At no point is the network trained using human knowledge or expert moves

The network

value heod

40 residual layers

polcy head
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residudl layer
residual layer
residual layer
residudl layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residudl layer
residual layer
residual layer
residual layer
residudl layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residudl layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer

convolutional layer

Input: The game
state (see below)

KTHE DEEP NEURAL NETWORK ARCHITECTURE

How AlphaGo Zero assesses new positions

The policy head

19 x19 +1 (for pass)
move logit probabilities

Fully connected layer

‘ EE T-En
Rectifier non-linearity
EE T-NE
Batch normdlisation
X EEETE - En

2 convolutional fiters
(Ix1) .

I =
Input

A residual layer

EE N

Rectifier non-linearity

EE N Nl

Skip connection

HE N -En
Batch normdlisation

EEETE - .

256 convolutiondl
filters (3x3)

Recfifier non-linearity

Batch normalisation

256 convolutiondl
fiters (3x3)

T .
Input

N

/MONTE CARLO TREE SEARCH (MCTS)

How AlphaGo Zero chooses its next move
First, run the following simulation

The current gome state (s)
Each potential action from a game] 6 O 0 H
9 . times..

state stores four numbers:

A possible next
action (a)

N The number of fimes action a has Start at the root node of the tree (the current game state)
been taken from state s

The action that
moximises Q + U

W The ot value of the next shate 1. Choose the action that maximises..

Q The mean value of the next state Q + U

P The prior probability of selecting /" \ A function of P and N that

action a

The action that
maximises Q +U
increases if an action hasn't been

ClismecveiisoF explored much, relative to the other

__________________ the next stat N
Game state fed info l next state actions, or if the prior probabiity of

neund network the action is high

leof node O

The game state

Early on in the simulation, U dominates (more exploration),
but later, Q is more important (less exploration)

newly niticlised
nodes

2. Continue until a leaf node is reached

The game state of the leaf node is passed into the neurdl
network, which outputs predictions about two things:

sakoy s O

p Move probabilities

v Value of the state (for the current player)
Move probabilities
The move probabilities p are attached to the new feasible
actions from the leaf node

i

The current game state (s)

" N=10+1
W=5.4+0.2 . ——
Q=5.6/1 o e ; 3. Backup previous edges
P=0.5 . I Each edge that was traversed to get to the leaf node is updated
‘ : as follows:
_ S — N+
e N— N+
W=2.5+0.2 AEtos o W—-W+vy
Q-2.7/5 Q= W/N
P=0.6
.“+hen Selec+ a move The current game state (s) O+her\ pOin+S
After 1,600 simulations, the move can either be chosen: = Thasib-fraafromthe chosenmovaicretainad
N=800 N=600 for calculating subsequent moves

Deterministically (for competitive play)

Choose the action from the current state with greatest N N=200 = Thapestof fhe freaisdscandad
Stochastically (for exploratory play) O

Choose the action from the current state from the distribution

1
A Choose this move if deterministic
TT~ NTT

If stochastic, sample from categorical distribution

TU vith probabities (0.5, 0.125, 0.375)

K where T is a femperature parameter controlling exploration

alpha go zero: train

a b
5.000 - 5,000
4,000+ 4,000
o 3,000 - .
5 2,000 £ 000
- ©
O 1,000 - o
W = 2,000
0 — AlphaGo Zero 40 blocks
—1,000 --- AlphaGo Master 1,000 -
2000 --- AlphaGo Lee O-
0 5 10 15 20 25 30 35 40 '
Days (;}
¢ o
N (\'o &

rl/sl + resnet/cnn

Elo rating
Prediction accuracy
on professional moves (%)
MSE of professional
game outcomes

== Reinforcement learning
== Supervised learning == Reinforcement learning == Reinforcement learning
=== AlphaGo Lee == Supervised learning 0.15 == Supervised learning

e+ T T 71

10 20 30 40 50 60 70 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Training time (h) Training time (h) Training time (h)

Prediction accuracy
MSE of professional
game outcomes

g
0
()
>
(@]
S
©
C
.0
2]
[%)]
[}
8
o
P
o
C
(o]

(6 14)2)

(®) O O+ (12)16 X(4 101
3,\6/:‘1‘\2/- ;—0—? 6——4\4‘;»— ms\-—
\ \, 2 S

T

i o

0

' ' ' ' -
' ' ' ' -
' ' ' ' !
' ' ' ' :
' ' ' ' ‘
' ' ' ' .
' ' ' ' .
' ' ' ' -
' ' ' ' -
' ' ' ' -
' ' ' ' -
' ' ' ' :
P oo }
P oo)
' ' ' s '

0 ' : 28 50 :

o
L 12 L 24 36 J 72

: ééé
20)(24)(26)(28)

¢

v .

~ A A =
{14) 801\60‘!62‘

30)(3 (6s 3672

FH e —Go) &)
‘ | | é*é@ 12 g
> £ - T 10 76 __@ @jzi @
s X 60 B a0 »@ (@@ o Y
33@ D | o e ég@ 0 OF
o o @ 0 O O oY et @g@ &
I |

at@ @at @at@ at@
7 B M7

-

4.00e-03

3.50e-03

3.00e-03

2.50e-03

2.00e-03

Frequency

1.50e-03

1.00e-03

5.00e-04

0.00e+00

2.50e-04

2.00e-04

1.50e-04

1.00e-04

Frequency

5.00e-05

0.00e+00

4.00e-04

3.50e-04

3.00e-04

2.50e-04

2.00e-04

1.50e-04

Frequency

1.00e-04

5.00e-05

0.00e+00

0

0

0

5-3 point press

&)
o
o
o
.Q
«$
0o ° o}

Hours

Hours

Pincer 3-3 point

< ..
o o
0.\0
o. G ¢

Hours

10 20 30 40 50 60 70

Attach and draw back

10 20 30 40 50 60 70

10 20 30 40 50 60 70

7N\ N\

)
//

Frequency

Frequency

4.00e-04

3.50e-04

3.00e-04

2.50e-04

2.00e-04

1.50e-04

1.00e-04

5.00e-05

0.00e+00

2.50e-05

2.00e-05

1.50e-05

1.00e-05

5.00e-06

0.00e+00

0

0

Small avalanche

.'.
L

'...' °
’o....:. ®

10 20 30 40 50 60 70

Hours

Knight's move pincer

10 20 30 40 50 60 70

Hours

N O\ -
Q:
N

alpha go zero (dec 17)

generalized version of alpha go approach (no go-
specific knowledge)

input board state, possible moves, evaluation function
—> generates policy/value networks via self play

teaches self how to play, improves to master level

—— AlphaZero

— AlphaZero - AlphaZero — AlphaGo Zero
—— Stockfish — Elmo —— AlphaGo Lee

0
0O 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700

Thousands of Steps Thousands of Steps Thousands of Steps

EAsUEsAX
AAdAaddda
AR A A A
Eoawdanz

A10: English Opening

25%
|

199 A

A ‘ "‘
12% | MalY Y

W A
6 # A ! Y Y
W Y
o
2:00 4:00 6:00 8:00

0:00
1...e5 g3 d5 cxdS @6 £¢2 &xdS Df3

»
b [

poll

5358 B8 A

\OWErSH AN F
.H..‘é DLEHNE
c d e f g h

.
po

b

AN W s o N
~

Vu 7]
= Y
a

I

w l(w/~4/(' b 1/47/2

D06: Queens Gambit

25% -
19% 4+
2 A,
M
6% + 1 M)
."-" e’
0:00 2:00 4:00 6:00 8:00

...c6 A3 N f6)3 ab g3 c4 ad

(EasWes X
Yy Yy Y
6 A

v ’4/’6/(' b ~/47/H

A46: Queens Pawn Game

00 2:00 4:00 6:00 8:00

0
2..d5 c4 e6 N3 £e7 £f4 O-0O €3

EAasWede X
AAdd 444
6 da

Bawsiat
a b d e I g h

w | /“/H b 5/44/1

E00: Queens Pawn Game

25% +
19% +
12% +
6%
ANV
-

4:00 6:00

3.3 di A3 2b4 £g5 h6 Wad 41c6

8:00

.NUbwm‘
©

& 7N
SY)
9

> I
23
a @Eg
® |I>2
=g C>

a b ¢

w 16/3 4/(' b 0/48/2

E61: Kings Indian Defence

0% DS - VoS Y.V S-S -

0:00 2:00 4:00 6:00 8:00

3...d5 cxdS £xdS e4 Hixe3 bxe3 £g7 £e3

AN W s o

A

od L
EE
|I>2~

o

y AN F
S8
9

w ~‘)/l l/(' b 4/46/0

CO00: French Defence

' :);”_‘ ’:C J"C C".'O o C-Ov
3.00c3 D6 €5 DdT 4 5 D3 &eT

B50: Sicilian Defence

B30: Sicilian Defence

2% K oWesAaX 25% 1
. A4 44444 .
g . A 19% 4
12 5 F 3 12% +
6% 3 7A) 6
A AP . 2 3)
e 1 Olr;'o 2:00 4:00 6:00 8:00 ? :#’\‘g%{"m; h 0:00 2:00 4:00 6:00 8:00
w | /‘ 2/1, b 4/4 3/3 3.d4 cxd4 Hxd4 &6 Ac3 a6 f3 e5 w 11/39/0, b 3/46/1 3.2b5e6 0-0 De7 Eel a6 £f1 d5
B40: Sicilian Defence C60: Ruy Lopez (Spanish Opening)
KA WeoeaX 23 X aWesAX 25% 1
A4 A& 444 . 1 AAA AAA
6 F 3 - BFY A 19% +
® 4 129 | & 4 12% +
3 2 6° 3 2 i o ‘,,"‘ " L
B BAH ABAAH L JABRARA RARAY A
a b cdel gh 0:00 2:00 4:00 6:00 8:00 9 0:00 2:00 4:00 6:00 8:00
w 17/31/2,b 3/40/7 3.d4 cxd4 Dxd4 Dce6 Dc3 WeT Le3 ab w 27/22/1,b 6/44/0 4.2a4 27 0-0 &f6 Eel b5 £b3 0-0
B10: Caro-Kann Defence A05: Reti Opening
EAasWeeaX 25% EaoWee X 2
& YY) . AAAAA444 .
3 F 3) 6 Y i |
5 12% | .»‘) |_ 5 12% 4
3 6% "‘“ 3 "_ 6% + N
2 8 BAL - A AR BABRARALA -
% C—‘Q\\“j‘f%#&‘?; O'rgo 2:00 4:00 6:00 8:00 \—%4:';"1’%\# ; " 0:00 2:00 4:00 6:00 8:00

v 25/25/0, b 4/45/1

2.d4 d5 e5 &f5 &\f3 e6 £e2 ab

w 13/36/1,b 7/43/0

2.c4 e6d4 d5 &3 £e7 £f4 0-O

Total

games: w 242/353/5, b 48/533/19

Overall percentage: w 40.3/58.8/0.8, b 8.0/88.8/3.2

tic-tac-toe

- github.com/evg-tyurin/alpha-zero-general

- thanks Surag Nair, Evgeny Tyurin!
- Input: board, moves, evaluate

- play games against self, train (alpha zero +
keras/tensorflow) to recognize winners/
minimize losses, evaluate new network, repeat

- demo: play, train, test

http://github.com/evg-tyurin/alpha-zero-general

recap

- mcts (uct + rollouts) “solves” go, but doesn’t scale

- combine expert knowledge (prior games) with
value and policy networks (optimization) to
surpass human players

- a single network randomly initialized can reach
even greater performance via self-play

- this approach generalizes to other domains and is
very human like

what is ai?

- chinese room example

- give beginner a board, rules, have them
practice

- difference between master and beginner:
knows what to seek, what to avoid —> they
have experience

- casablanca: how many moves ahead do you
think?

thanks for coming!

papers

- Reinforcement Learning and Simulation-Based
Search in Computer Go (2009)

- Mastering the game of Go with deep neural
networks and tree search (2016)

- Mastering the game of Go without human
knowledge (2017)

- Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm (2017)

http://papersdb.cs.ualberta.ca/~papersdb/uploaded_files/1029/paper_thesis.pdf
http://papersdb.cs.ualberta.ca/~papersdb/uploaded_files/1029/paper_thesis.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://deepmind.com/documents/119/agz_unformatted_nature.pdf
https://deepmind.com/documents/119/agz_unformatted_nature.pdf
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815

brettkoonce.com

- quarkworks.co

- mobile apps for android and ios

- custom solutions for solving problems on-
device (edge computing)

- keras, tensorflow lite, mobilenets, tf-coreml

- traditional machine learning, analytics

http://brettkoonce.com
http://quarkworks.co

