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go: overview

• discuss game, rules 

• uct + random rollouts —> MCTS 

• MCTS + policy + value —> Alpha Go 

• policy + value + self-play —> Alpha Go Zero 

• Alpha Go Zero - Go —> Alpha Zero, demo



go: board



go: game/rules
• origin: asia, ~2500 years ago 

• 19x19 board (361 squares), fill with stones 

• squares + captures —> score (chinese) 

• black - 7.5 (komi) > white —> winner (no 
draws) 

• ~500 moves —> ~1e170 game complexity 
(chess: ~1e50, # atoms in universe: ~1e80)



uct (2006)
• multi-armed bandit problem: how do you win most 

money from room of slot machines, given X quarters? 

• basic idea: explore new machines (policy), calculate 
reward of a machine (value) 

• ucb: put statistical bound on losses —> maximize gains



random rollouts (2009)
• take current board state, pick candidate move 

to explore/evaluate 

• alternate adding stones randomly till both 
sides cannot play (pass) 

• score via chinese rules —> move win/loss 
predictor —> update value of candidate move 

• uct + random rollouts —> mcts —> solves go!   
(minor bug: universe will die of heat death first)



alpha go (2016)



alpha go: fan/lee/master

• take mcts approach, but: 

• use policy network to quickly make moves 
(test good moves rather than random ones) 

• use value network to predict winning odds 
(cheaper predictions for faster exploration)  

• finally, use mcts to perform deeper 
evaluation as needed



policy network
• human games (~150k) + supervised learning —> 

policy network (given position, predict next move) 

• play games using policy network + MCTS —> more 
games (human + computer) —> train again —> 
better policy network (e.g. reinforcement learning) 

• use policy network to make moves rapidly —> 

• 55% accuracy in 3ms, 24% accuracy in 2µs 

• policy network alone can defeat many engines*



value network
• from given input state, can we predict who will win, 

without performing a rollout simulation? 

• build CNN to predict winning probability % 

• train: mse between prediction and outcome 

• overtrains to input games, so have to relax 
network (e.g. rotate/flip games) 

• use value network to predict expected win/loss of 
moves without rollout (15000x faster)



alpha go: performance



alpha go: zero (2017)
• input a position —> use single network 

(combined policy + value) to predict best move 
and winning odds —> build game tree 

• play games against self (tabula rasa), train 
new network to categorize wins/losses and 
reduce prediction error 

• evaluate new network against old, pick winner 

• repeat 700k generations —> master level play



applied-data.science/blog/
alphago-zero-cheat-sheet

http://applied-data.science/blog/alphago-zero-cheat-sheet
http://applied-data.science/blog/alphago-zero-cheat-sheet






alpha go zero: train



rl/sl + resnet/cnn



fuseki





alpha go zero (dec 17)
• generalized version of alpha go approach (no go-

specific knowledge) 

• input board state, possible moves, evaluation function 
—> generates policy/value networks via self play 

• teaches self how to play, improves to master level





tic-tac-toe
• github.com/evg-tyurin/alpha-zero-general 

• thanks Surag Nair, Evgeny Tyurin! 

• input: board, moves, evaluate 

• play games against self, train (alpha zero + 
keras/tensorflow) to recognize winners/
minimize losses, evaluate new network, repeat 

• demo: play, train, test

http://github.com/evg-tyurin/alpha-zero-general


recap
• mcts (uct + rollouts) “solves” go, but doesn’t scale 

• combine expert knowledge (prior games) with 
value and policy networks (optimization) to 
surpass human players 

• a single network randomly initialized can reach 
even greater performance via self-play 

• this approach generalizes to other domains and is 
very human like



what is ai?
• chinese room example 

• give beginner a board, rules, have them 
practice 

• difference between master and beginner: 
knows what to seek, what to avoid —> they 
have experience 

• casablanca: how many moves ahead do you 
think?



thanks for coming!



papers
• Reinforcement Learning and Simulation-Based 

Search in Computer Go (2009) 

• Mastering the game of Go with deep neural 
networks and tree search (2016) 

• Mastering the game of Go without human 
knowledge (2017) 

• Mastering Chess and Shogi by Self-Play with a 
General Reinforcement Learning Algorithm (2017)

http://papersdb.cs.ualberta.ca/~papersdb/uploaded_files/1029/paper_thesis.pdf
http://papersdb.cs.ualberta.ca/~papersdb/uploaded_files/1029/paper_thesis.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://deepmind.com/documents/119/agz_unformatted_nature.pdf
https://deepmind.com/documents/119/agz_unformatted_nature.pdf
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815


brettkoonce.com
• quarkworks.co 

• mobile apps for android and ios 

• custom solutions for solving problems on-
device (edge computing) 

• keras, tensorflow lite, mobilenets, tf-coreml 

• traditional machine learning, analytics

http://brettkoonce.com
http://quarkworks.co

