
brett koonce
asparagui

2017-02-23

git at scale

overview

• who uses homebrew, git, open source?

• purpose: convince you to make a contribution to
an open source project

• how to make a good pr, what a maintainer does

• xcode + git, project/release management

VERSION CONTROL
git gets easier once you get the basic idea that branches

 are homeomorphic endofunctors mapping
submanifolds of a Hilbert space.

version control

• why use it? what is the purpose?

• project history, save progress

• concentrate on a subset of codebase

• reason about changes more simply

• allows us to collaborate with others, future self

st. linus quote

• what he thinks a good pr looks like

• https://github.com/torvalds/subsurface-for-dirk/
blob/master/README#L92

https://github.com/torvalds/subsurface-for-dirk/blob/master/README%23L92

what i like

• single tree with release tags

• clean descriptions, common keywords

• lots of little commits and branches

• rapid merges and releases

• my config: git + textmate + gitx + github

how to make a pr

• basic demo of pr with github + hb + package

maintenance

you’re gonna forget
• why was this bug a big deal?

• what hardware did you test it on?

• which other tools did we use along the way?

• what other stuff were we doing at the same time?

• coding a solution is step one, make it future proof

• a little time now will save you a bunch down the road

maintenance

• code cleanup and style

• document history of project

• gatekeeper for features, project releases

• grow project => need more contributors

• don’t scare the newbies!

git rebase
• moving commits around

• rewording descriptions

• fixing spelling mistakes

• fixing whitespace issues

• rebasing onto master

• merging/splitting a branch

release
workflow

release workflow
• release current version, prep next version

• bump api/version number

• tag commit

• rebase release branch

• hand/fastlane/travis, upload first build

• daily release cycle

xcode + git
• xcode vs. git, choose a version

• things that will break on you

• project files, provisioning settings

• file imports, coredata files, plist files

• whitespace, soft reset, merging commits

• demo of fixing a project file

upgrading
projects

pod install

• pod install vs. pod upgrade

• only upgrade once each release cycle

• commit info/description

• checkin source, pin problem libraries

• static libraries/carthage vs online/gradle

coredata/realm models

• duck model of upgrading models

• what coredata does when we make a change

• how not to change project files if you want

• cowboy mode: how to go around xcode

releasing projects

readme.md

• add a license to a new repo

• markdown all the things

• document your build process

• give to somebody else, have them make build

• checkin keys, try to keep docs up to date

git grabbag

• unclean trees, how to clean up

• stupid head reset tricks

• git stash and pop

• .gitignore file

• branch naming schemes

git gui

• github, gitlab

• phabricator

• gitx, gitup

• sourcetree, github

• slack + integrations

goto end

why do i code?

• code for self

• code for $$

• code for others

• show first commit to homebrew

• show own projects

your homework

• make a commit to something

• find a project you like/use and help it

• doesn’t have to be code

• docs, wiki, faq, documentation (or $$)

• hand out guides

golden rule of git

-asparagui

“if you’ve never force pushed
to master, you’re doing it wrong!”

sources

• brettkoonce.com/presentations/git.pdf

• mike’s book: git in practice (manning)

• git docs (e.g. stackoverflow)

• quarkworks.co

http://quarkworks.co

brett koonce
asparagui

2017-02-23

git at scale

