solving go: 2019

brettkoonce.com/talks
feburary 24th, 2019

http://brettkoonce.com/talks

go: overview

- discuss game, rules

- uct + random rollouts —> MCTS

- MCTS + policy + value —> Alpha Go
-+ policy + value + self-play —> Alpha Go Zero

-+ Alpha Go Zero - Go —> Alpha Zero, demo

go: game/rules

* origin: asia, ~2500 years ago
- 19x19 board (361 squares), fill with stones
- squares + captures —> score (chinese)

- black - 7.5 (komi) > white —> winner (no
draws)

- ~300 moves —> ~1e170 game complexity
(chess: ~1e50, # atoms in universe: ~1e80)

uct (2006)

- multi-armed bandit problem: how do you win most

money from room of slot machines, given X quarters?

- basic idea: explore new machines (policy), calculate
reward of a machine (value)

- uchb: put statistical bound on losses —> maximize gains

Selection b Expansion Cc Evaluation

random rollouts (2009)

- take current board state, pick candidate move
to explore/evaluate

- alternate adding stones randomly till both
sides cannot play (pass)

- score via chinese rules —> move win/loss
predictor —> update value of candidate move

- uct + random rollouts —> mcts —> solves go!
(minor bug: universe will die of heat death first)

alpha go (2016)

) ALPHAGO. | g il LeEsepoL |
N0:01:00) ¥ i 00:00:5°

alpha go: fan/lee/master

-+ engine/year: fan/2015, lee/2016, master/2017
- take mcts approach, but improve search:

- use policy network to quickly make moves (test
good moves rather than random ones)

- use value network to predict winning odds
(cheaper estimates for faster exploration)

- finally, use mcts to perform deeper evaluation as
needed

policy network

- human games (~150k) + supervised learning —> cnn
policy network (given position, predict next move)

- use policy network + MCTS —> play more games
(human + computer) —> train again —> better policy
network (e.g. reinforcement learning)

- use policy network to make moves rapidly —>

- 55% accuracy in 3ms, 24% accuracy In 2us

- policy network alone can defeat many engines*

value network

- from given input state, can we predict who will win,
without performing a rollout simulation?

- build CNN to predict winning probability %
- train: mse between prediction and outcome

- overtrains to input games, so have to relax
network (e.g. rotate/flip games)

- use value network to predict expected win/loss of
moves without rollout (15000x faster)

alpha go: performance

[EUOISS8}0id

Jnajewy

(@)}
L
-+

©
o
o
L

0
Rollouts e O

uaz
Iyoed
oban4

Value network @

oneyd|y
oneyd|y
INH ue

paINquUisIp

Policy network @

au01s Azein

alpha go: zero (2017)

- Input a position —> use single network
(combined policy + value) to predict best move
and winning odds —> build game tree

- play games against self (tabula rasa), train
new network to categorize wins/losses and
reduce prediction error

- evaluate new network against old, pick winner

- repeat 700k generations —> master level play

lied-data.science/blo
alphaqgo-zero-cheat-shee

SELF PLAY

Create a ‘training set’

The best current player plays 25,000 games against itself
See MCTS section to understand how AlphaGo Zero selects each move

At each move, the following information is stored

&E T Y

The game state The search probabilities The winner
(see "What is a Game (from the MCTS) (+1if this player won, -1if
State section’) this player lost - added once

the game has finished)

ALPHAGO ZERO CHEAT SHEET

The training pipeline for AlphaGo Zero consists of three stages, executed in pardllel

RETRAIN NETWORK

Optimise the network weights

A TRAINING LOOP
Sample a mini-batch of 2048 positions from the last 500,000 games

Retrain the current neural network on these positions
- The game states are the input (see Deep Neural Network Architecture’)

Loss function
Compares predictions from the neural network with the search probabiities and actual winner

p Cross-entropy
+

v Mean-squared error Y
+

Regularisation

PREDICTIONS

After every 1,000 training loops, evaluate the network

EVALUATE NETWORK

Test to see if the new network is stronger

Play 400 games between the latest neural network and the current best
neural network

Both players use MCTS to select their moves, with their respective neural
networks to evaluate leaf nodes

Latest player must win 55% of games to be declared the new best player

)4

"WHAT IS A ‘GAME STATE’

Tif black stone here
0 if black stone not here

black’s stones
19

..and for the previous
7 time periods

Current position of
white's stones

..and for the previous

Allif black to play 7 time periods

|

l Current position of 19 x 19 x 17 stack
|

|

|

|

|

i Al O if white to play

This stack is the input to the deep neural network
~ 4

http://applied-data.science/blog/alphago-zero-cheat-sheet
http://applied-data.science/blog/alphago-zero-cheat-sheet

The value head

game value for current player

[-1.1
tanh non-linearity

scalar

Fully connected layer

EE ©- .
EE N-EE

Hidden layer, size 256

Rectifier non-linearity

Fully connected layer

’ EE ©-Em
Rectifier non-linearity
Al T-Em
Batch normdlisation
I AEETY .

1 convolutional filter
(1x1) .
I =
Input

A convolutional layer
N -E.
Rectifier non-linearity
I EE ©-Ee

Batch normalisation

EEETE - .

256 convolutional
filters (3x3)

Input

The network learns ‘tabula rasa’ (from a blank slate)

40 residual layers

At no point is the network trained using human knowledge or expert moves

The network

value heod

polcy head
residudl layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residudl layer
residual layer
residual layer
residual layer
residual layer
residudl layer
residual layer
residual layer
residual layer
residudl layer
residual layer
residual layer
residual layer
residudl layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residual layer
residucl layer
residudl layer
residual layer
residual layer
residual layer
residual layer
residual layer
residudl layer
residual layer
residual layer

convolutional layer

Input: The game
state (see below)

KTHE DEEP NEURAL NETWORK ARCHITECTURE

How AlphaGo Zero assesses new positions

The policy head

19 x19 +1 (for pass)
move logit probabilities

Fully connected layer

‘ EE T-En
Recfifier non-linearity
EE T -NE
Batch normdlisation
I EEETN - N

2 convolutional fiters
(1x1) .

I -
Input

A residual layer

El NN

Rectifier non-linearity

EE N EE

Skip connection

HE N NN
Batch normdlisation

EEETE -

256 convolutiondl
filters (3x3)

Rectifier non-linearity

Batch normalisation

256 convolutional
fiters (3x3)

x NN
Input

N

/MONTE CARLO TREE SEARCH (MCTS)

How AlphaGo Zero chooses its next move
First, run the following simulation

Each potential action from a game] 6 O O +imes
e L

state stores four numbers:

The current gome state (s)

A possible next

tion (a)
T N The number of times action a has Start at the root node of the tree (the current game state)

been taken from state s

The action that
maximises Q + U

W The ot value of the next shate 1. Choose the action that maximises..

Q The mean value of the next state Q + U

P The prior probability of selecting /" \ A funciion of P and N that

action a

The action that

maximises Q +U

increases if an action hasn't been

__________________ the next state exp.lor‘ed m\.Jchy, r*ela.five to f'ne. ‘ofher‘
Game state fed info actions, or if the prior probability of
neurd network the action is high

The mean value of
leaf node

The game state

Early on in the simulation, U dominates (more exploration),
but later, Q is more important (less exploration)

newly niticlised
nodes

2. Continue until a leaf node is reached

The game state of the leaf node is passed into the neurdl
network, which outputs predictions about two things:

sado prprsa O

p Move probabilities

v Value of the state (for the current player)
Move probabilities
The move probabilities p are attached to the new feasible
actions from the leaf node

il

The current game state (s)

" Ne10+1
W=54+0.2 - —
Q=5.6/1 S ; 3. Backup previous edges
P=0.5 o I Each edge that was traversed to get to the leaf node is updated
; as follows:
P - -4 —_> +
- v N N+1
W=2.5+0.2 Aehons W—=>W+vy
Q-2.7/5 Q = W/N
P=0.6
“.+hen Selec+ a move The current game state (s) O+her‘ pOin+$
After 1,600 simulations, the move can either be chosen: = Thasub=trea fromthe chosenmoveisretaned
N=800 N=600 for calculating subsequent moves

Deterministically (for competitive play)

Choose the action from the current state with greatest N N=200 = Thepestob the traaisdissarded
Stochastically (for exploratory play) Q

Choose the action from the current state from the distribution

1
pA Choose this move if deterministic
T~ NT

If stochastic, sample from categorical distribution

TU vith probabities (0.5, 0.125, 0.375)

\ where T is a temperature parameter controlling exploration

Elo rating

alpha go zero: train

5,000 1
4,000 -
3,000 -
2,000
1,000 -

—-1,000 -
—2,000

— AlphaGo Zero 40 blocks
--- AlphaGo Master
--- AlphaGo Lee

10

15

20 25 30 35 40
Days

4,000

Elo rating
W
(&)
o
o

‘b QQ’ &
&@ ©
Q\

rl v. sl + resnet v. cnn

Elo rating
Prediction accuracy
on professional moves (%)
MSE of professional
game outcomes

== Reinforcement learning
== Supervised learning == Reinforcement learning == Reinforcement learning
== AlphaGo Lee == Supervised learning 0.15 == Supervised learning
' e [

10 20 30 40 50 60 70 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Training time (h) Training time (h) Training time (h)

Prediction accuracy
MSE of professional
game outcomes

X
0
o
>
o)
S
©
c
)
(2]
)
0]
o
19)
b
a
c
(S

end to end learning

How the model improves

Already dan level even if the opening doesn’t make much sense.

- pytorch Yuandong Tian talk (october 18)

alpha zero (dec 18)

generalized version of alpha go approach (no go-
specific knowledge)

input board state, possible moves, evaluation function
—> generates policy/value networks via self play

teaches self how to play, improves to master level

—— AlphaZero

—— AlphaZero —— AlphaZero —— AlphaGo Zero

—— Stockfish I — Elmo —— AlphaGo Lee
0

O + + + + + + 4 + + + + + + ! + + + + + + 1
0 100 200 300 400 500 600 700 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Thousands of Steps Thousands of Steps Thousands of Steps

alpha zero

—— AlphaZero Symmetries
AlphaZero
—— AlphaGo Zero

+

100 200 300 400 500 600 700 50 100 150 200 250 300
Thousands of Steps Hours

Figure S1: Learning curves showing the Elo performance during training in Go. Com-
parison between AlphaZero, a version of AlphaZero that exploits knowledge of symmetries in
a similar manner to AlphaGo Zero, and the previously published AlphaGo Zero. AlphaZero
generates approximately 1/8 as many positions per training step, and therefore uses eight times
more wall clock time, than the symmetry-augmented algorithms.

- symmetries (inverse relaxation)

BEHaWDE

EaoWe oaX
Add 4 141

Frequency in Self-Play
Frequency in Self-Play

4:00 6:00 AP R 558 2:00 0 6:00

Hours of Training _ Hours of Training

8:00 1000 12:00 AL AL IEAEIEAL b 4:00 6:00 800 1000 12:00

Frequency in Self-Play
Frequency in Self-Play

,
\

200 400 600 800 1000 12:00 SlE|m|e|sle @ a6 200 400 600 800 1000 12:00

~N
(_/

(_) . Hours of Training Hours of Training

AlphaZero wins AlphaZero draws AlphaZero loses O AlphaZero white . AlphaZero black

Fig. 3. Matches starting from the most popular human openings. AlphaZero's perspective: win (green), draw (gray), or loss (red).
AlphaZero plays against (A) Stockfish in chess and (B) EImo in shogi. The percentage frequency of self-play training games in which this
In the left bar, AlphaZero plays white, starting from the given position; opening was selected by AlphaZero is plotted against the duration
in the right bar, AlphaZero plays black. Each bar shows the results from of training, in hours.

Chess Shogi Go
AlphaZero vs. Stockfish AIphaZero vs. Elmo AlphaZero vs. AGO

EAoWer o AKX .
'Y YY)

EREEEEETE
NN
NN
EEEEEE
EJEIEAEAEAEAEAEAER
1Al [[[| [m]
ElEEEE R

W:29.0% D:70.6% L:0.4% W:842% D:22% L:13.6%

W: 20% D:97.2% L:0.8% W:982% D:0.0% L: 1.8%

Chess Shogi
1/100 time
1/30 time
1/10 time
1/3 time

same time

Latest Stockfish Aperyphapaq
o
Opening Book CSA time control

D Human openings o

TCEC openings o

AlphaZero wins AlphaZero draws AlphaZero loses O AlphaZero white ‘ AlphaZero black

tic-tac-toe

- github.com/suragnair/alpha-zero-general

- thanks Surag Nair, Evgeny Tyurin!
- Input: board, moves, evaluate

- loop: play games against self, train (keras/
tensorflow) to recognize winners/minimize
losses, evaluate new network, repeat

- alpha zero demo: play, train, test

http://github.com/suragnair/alpha-zero-general

recap

- mcts (uct + rollouts) “solves” go, but doesn’t scale

- combine expert knowledge (prior games) with
value and policy networks (optimization) to
surpass human players

- a single network randomly initialized can reach
even greater performance via self-play

- this approach generalizes to other domains and is
very human like

what is ai?

- chinese room example

- give beginner a board, rules, have them
practice

- difference between master and beginner:
knows what to seek, what to avoid —> they
have experience

- casablanca: how many moves ahead do you
think?

thanks for coming!

papers

- Reinforcement Learning and Simulation-Based
Search in Computer Go (2009)

- Mastering the game of Go with deep neural
networks and tree search (2016)

- Mastering the game of Go without human
knowledge (2017)

- A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play
(2018)

http://papersdb.cs.ualberta.ca/~papersdb/uploaded_files/1029/paper_thesis.pdf
http://papersdb.cs.ualberta.ca/~papersdb/uploaded_files/1029/paper_thesis.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://deepmind.com/documents/119/agz_unformatted_nature.pdf
https://deepmind.com/documents/119/agz_unformatted_nature.pdf
http://science.sciencemag.org/content/362/6419/1140
http://science.sciencemag.org/content/362/6419/1140

