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WHAT DO YOU DO? 19 THAT A HARD PROBLEM? | WHY 1S IT S0 HARD? IMAGINE FIGURING OUT THE FOLDS .

T MAKE SOFTUARE | [ SOMEONE. MAY SOMEDAY | [ HAVE You BVER Maoe A | | TO MAKE AN ACTUAL LAING CRANE.
THAT PREDICTS HOW FIND A HARDER ONE. 7 ... Juer FolDS?
PROTENS WILL FOLD | C‘-‘\NIMHKE CUTS?

IF YOU CAN FOLD A
PROTEASE ENZYME.
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protein modeling, casp

alphafold

draw, torsion backbone, simulated
annealing

coevolutionary residues, scoring networks

energy models



sequence —> ?? —> model

model —> predict drug interactions, de
novo proteins

experimental processes to do, but $$$

ideal: input —> computer —> model —>
science —> profit!
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* every two years

 competition, groups
from around world

* given known
sequences —> models
—> recent undisclosed
protein —> results

— 1st place

2nd place

CASP10 CASP11 CASP12 CASP13

Curves show the best and second best predictors at each CASP, while the dashed line shows the ex-
pected improvement at CASP13 given the average rate of improvement from CASP10 to 12. Ranking is
based on CASP assessor’s formula, and does not always coincide with highest mean GDT_TS (e.g.
CASP10.) Error bars correspond to 95% confidence intervals.



nn 1: draw model to generate fragments
simulated annealing to combine

nn 2a: inter-residue distances

nn 2b: scoring network

relaxation, nn 3: final protein scoring
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Figure 7. MNIST generation sequences for DRAW without at-
tention. Notice how the network first generates a very blurry im-
age that i1s subsequently refined.
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Figure 8. Computational pipeline for protein folding. The MSA for the protein family is typically generated by a sequence similarity search in a
large database of protein sequences to collect related sequences that are likely to have similar 3D structures. Correlations between sequence
positions i and j are calculated from observed frequencies of amino acids in single MSA columns and column pairs. By inferring a minimal statistical
model of full length-sequences, which is consistent with these correlations (Text S1), direct coupling strengths e;;(A,B) between any pairs of residues
are deduced. They help to derive distance constraints, which in tum are used to produce folded structures using the following steps: distance
geometry generation of approximate folds, molecular dynamics simulated annealing using standard force fields, and chirality filtering. Here, we use
MSAs from the PFAM collection of pre-aligned sequence families [1].

doi:10.1371/journal.pone.0028766.g008




(a) Tertiary structure (b) Contact map (c) Varants of contact  (d) Co-evolution statistics

Figure 1: Oxymyoglobin (a) and 1ts contact between amino acid residue 6 and 133. Helix—helix
contacts correspond to “checkerboard™ patterns in the contact map (b). Various variants of the contact
6/133 encountered 1n nature (native pose in upper left, remaining poses are theoretical models) (¢)
are reflected 1n the co-evolution statistics (d).
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Figure S1. The overall deep network architecture for the prediction of protein distance matrix. The left
column is a 1D deep residual neural network that transforms sequential features (e.g., sequence profile and
predicted secondary structure). The right column 1s a 2D deep dilated residual neural network that
transforms pairwise features. The middle column converts the convoluted sequential features to pairwise
features and combine them with the original pairwise features. The picture is adapted from Figure 1 in the
paper at https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi. 1005324 .
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Figure 2. Representation of a protein structure (PDB code 5¢h6) using atomic densities. The density maps are calculated according to Eq. |l and rendered
using Pymol [33] with an 1sosurface level of 0.5.

Figure 3. Schematic representation of the convolutional neural network architecture used in this work. Unless otherwise specified, line connections across
boxes denote the consecutive application of a 3D convolutional layer (“Convolution™), a batch normalization layer (*BatchNorm™), and a ReLLU layer. Grey
arrows between boxes denote maximum pooling layers (“MaxPooling™). Labels “xX M™ denote the number of 3D grids and the number of filters used in
the corresponding convolutional layer. The grey stripes denote one-dimensional vectors and crossed lines between them stand for fully-connected layers with
ReLU nonlinearities. Details of the model can be found in Table S3 of Supplementary Information.




NCaC/CaCN/CRCo

RCo./Cal/CN

FIGURE 3 Illustration of movements used for the main-chain simulation (a—g) and full-atomic simulation (a—i). New positions of atoms after movements
are connected by dash lines. New residue numbers after the shift in g are in italic type.
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Figure 1: An unrolled simulator as a model for protein structure. NEMO combines a neural
energy function for coarse protein structure, a stochastic simulator based on Langevin dynamics, and
an atomic imputation network to build atomic coordinate output from sequence information. It is
trained end-to-end by backpropagating through the unrolled folding simulation.
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Figure 2: A neural energy function models coarse grained structure and is sampled by internal
coordinate dynamics. (A) The energy function is formulated as a Markov Random Field with
structure-based features and sequence-based weights computed by neural networks (Figure 6). (B)
To rapidly sample low-energy configurations, the Langevin dynamics simulator leverages both (1) an
internal coordinate parameterization, which is more effective for global rearrangements, and (i1) a
Cartesian parameterization, which is more effective for localized structural refinement. (C) The base
features of the structure network are rotationally and translationally invariant internal coordinates
(not shown), pairwise distances, and pairwise orientations.
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Figure 3. A 3D CNN architecture for human action recognition. This architecture consists of 1 hardwired layer, 3 convo-
lution layers, 2 subsampling layers, and 1 full connection layer. Detailed descriptions are given in the text.

- medium.com/shashwats-blog/
3d-mnist-b922a3d07334
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Fig. 1. The VoxNet Architecture. C'onv(f,d, s) indicates f filters of size
d and at stride s, Pool(m) indicates pooling with area m, and Full(n)
indicates fully connected layer with n outputs. We show inputs, example
feature maps, and predicted outputs for two instances from our experiments.
The point cloud on the left 1s from LiDAR and 1s part of the Sydney Urban
Objects dataset [4]. The point cloud on the right 1s from RGBD and 1s part
of NYUv2 [5]. We use cross sections for visualization purposes.




protein modeling, alphafold overview

traditional approaches, big data, new
techniques

end to end pipelines

field needs more eyeballs!



thanks for coming!



- moalquraishi.wordpress.com/2018/12/09/
alphafold-casp13-what-just-happened

- youtube.com/watch?v=HOVdHANnCSLI

 youtube.com/watch?v=R20 s8XPw8U
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