
University of Missouri

Course Final Report

Computational Optimization Methods

Author:

Truc Le
Sean Lander
Giang Bui
Brett Koonce
Zhaolong Zhong

Supervisor:

Dr. Jianlin Cheng

Columbia – Missouri

December 9, 2013

Contents

List of Figures ii

List of Tables iii

1 MCMC for Motif Search 1
1.1 Abstract . 1
1.2 Introduction . 1
1.3 Gibbs Sampling Methods for Motif Search . 3
1.4 Results and Visualization . 3
1.5 Implementation Discussion . 4

2 Hill Climbing and Simulated Annealing for TSP 9
2.1 Abstract . 9
2.2 Introduction . 9
2.3 Move Set . 11
2.4 Hill Climbing . 11
2.5 Simulated Annealing . 13
2.6 Results and Visualization . 13
2.7 Conclusion . 13

3 Sequence Alignment by Dynamic Programming 20
3.1 Abstract . 20
3.2 Introduction . 20

3.2.1 Dynamic Programming . 20
3.2.2 Sequence Alignment . 21

3.3 Sequence Alignment Algorithm . 21
3.3.1 Preliminary . 21
3.3.2 Global Alignment . 22
3.3.3 Local Alignment . 23

3.4 Results and Visualization . 24

4 Max-Flow/Min-Cut by Linear Programming 30
4.1 Abstract . 30
4.2 Introduction . 30
4.3 Maximum Flow . 31
4.4 Minimum Cut . 32
4.5 Results and Evaluation . 33

i

ii CONTENTS

5 Implementing a Small SVM 35
5.1 Abstract . 35
5.2 Introduction . 35
5.3 Sequential Minimal Optimization . 36

5.3.1 KKT condition . 36
5.3.2 Optimizing Alphas . 37

5.4 Gradient Descent . 38
5.5 Results and Evaluation . 38
5.6 Visualization . 42

List of Figures

1.1 Proposal 1 versus Proposal 2 on a short motif 5
1.2 Proposal 1 versus Proposal 2 on a long motif 6
1.3 Proposal 1 motif result for k = 13 and k = 17 from dataset M00931 7
1.4 Proposal 2 motif result for k = 13 and k = 17 from dataset M00931 7
1.5 Proposal 1 motif result for k = 13 and k = 17 from dataset M00971 8
1.6 Proposal 2 motif result for k = 13 and k = 17 from dataset M00971 8

2.1 Candidate move generation . 10
2.2 Hill Climbing using Two-Swap on 15 cities-dataset 15
2.3 Hill Climbing using Two-Flip on 15 cities-dataset 16
2.4 Simulated Annealing using Two-Swap on 15 cities-dataset 16
2.5 Simulated Annealing using Two-Flip on 15 cities-dataset 17
2.6 Hill Climbing using Two-Swap on 57 cities-dataset 17
2.7 Hill Climbing using Two-Flip on 57 cities-dataset 18
2.8 Simulated Annealing using Two-Swap on 57 cities-dataset 18
2.9 Simulated Annealing using Two-Flip on 57 cities-dataset 19

3.1 An amino acid scoring matrix: BLOSUM62 21
3.2 Sub-problems . 23
3.3 Global alignment scoring matrix . 25
3.4 Local alignment scoring matrix . 25

4.1 Max-Flow and Min-Cut result . 34

5.1 Optimizing outcome function . 42
5.2 Optimizing α values. Red indicates KKT violation 42
5.3 Final outcome function . 42
5.4 Final α values . 42

iii

List of Tables

2.1 Tour Length Result Summary . 15

5.1 Comparison of Various Methods for Training a SVM 41

iv

Preface

C
omputational Optimization is the process of using computers to find optimal (or rea-
sonably close) solutions to mathematically definable problems. Many small problems
can be tackled via brute force, but as the size and complexity of the problem mounts

it increasingly becomes the duty of the researcher to guide the computer down promising
lines and avoid getting sidetracked by noise or local optima.

In this quest, it is exceedingly valuable to have a map of the variety of techniques available
in the field. Towards this end, we attack a number of real world problems with well-known
classical and modern techniques. Some perform extremely well and others quickly reach
their limitations. The frontiers of science, though, are rarely well defined. Today’s obscure,
under-performing algorithm could well be the basis of tomorrow’s cutting edge research.

Ultimately, the computer is nothing more than another tool: a glorified abacus, perhaps.
However, if we can break a problem into tiny, repeatable steps, the machine can solve com-
plicated problems in a provable manner far beyond human abilities. As such, it is the duty
of the computer scientist to know not only what the machine can do but moreover what the
machine cannot do. Only then can the researcher have any hope of extending its capabilities
in the future. This report documents our tiny steps toward this goal.

Columbia – Missouri, December 11, 2013

Truc Le, Sean Lander, Giang Bui, Brett Koonce, Zhaolong Zhong

v

Chapter 1

Using Markov Chain Monte
Carlo for Motif Search

1.1 Abstract

We implemented Markov Chain Monte Carlo (MCMC) to discover sequence motifs (common
similar patterns) in DNA sequences. We implemented two methods, the first a greedy version
of the algorithm (P1) and a less greedy but more non-deterministic method (P2). We found
that the greedy version performed better on shorter sequences but on longer sequences
the second method performed significantly better and would recommend using this method
going forward.

1.2 Introduction

Markov Chain Monte Carlo is a class of methods in statistics which utilizes Markov chains
to create a state space which can then sampled via Monte Carlo (stochastic) methods. If the
underlying Markov model is robust, then Monte Carlo methods can be used efficiently to
generate approximate real-world distributions without having a proper formal model of the
problem domain. Gibbs sampling, which we utilized, further improves upon this method by
using a known state space which in turn eliminates bad samples (by its nature, since every
sample is drawn from a known sample state space).

We applied this method to the problem of finding DNA sequence motifs - that is to find
common sub-sequences within DNA chains. This problem is not a traditional string search-
ing problem, though, in that DNA (by its organic nature) is not perfectly well defined in
its sequences. That is to say, a pair of sequences may differ by only a single codon. As
such, we have to do a fuzzy search of all the potential sub-sequences within the DNA strand
to find the best approximate solution. Finding these sequences is a common problem in
bioinformatics, where identifying motifs allow researchers to identify genes.

1

2 CHAPTER 1. MCMC FOR MOTIF SEARCH

Algorithm 1.1 Gibbs Sampling Motif Search Proposal 1

Input: Set of sequences
{
S(i), i = 1, . . . , p

}
and the motif length k

Output: Starting positions for each motif in each sequence X = {x1, . . . , xp}

1: Randomly initialize state X
2: repeat
3: for i← 1, p do

4: M(c, j) ,

∣∣∣{l∣∣S(l)
xl+j−1=c, l∈{1,...,p}\{i}

}∣∣∣+1

p−1+4 for c ∈ {A,G, T,C}, j = 1, . . . , k
5: . Laplace smoothing probability
6: for j ← 1, length

(
S(i)

)
− k + 1 do

7: P (xi = j|M) =
k∏
l=1

M(S
(i)
j+l−1, l)

8: end for
9: xi ← argmax (P (xi|M))

10: end for
11: until convergence

Algorithm 1.2 Gibbs Sampling Motif Search Proposal 2

Input: Set of sequences
{
S(i), i = 1, . . . , p

}
and the motif length k

Output: Starting positions for each motif in each sequence X = {x1, . . . , xp}

1: Randomly initialize state X
2: repeat
3: for i← 1, p do

4: M(c, j) ,

∣∣∣{l∣∣S(l)
xl+j−1=c, l∈{1,...,p}\{i}

}∣∣∣+1

p−1+4 for c ∈ {A,G, T,C}, j = 1, . . . , k
5: . Laplace smoothing probability
6: for j ← 1, length

(
S(i)

)
− k + 1 do

7: P (xi = j|M) =
k∏
l=1

M(S
(i)
j+l−1, l)

8: end for
9: Sample new xi according to P (xi|M), update current state X

10: end for
11: until convergence or maximum number of iterations hit

1.3. GIBBS SAMPLING METHODS FOR MOTIF SEARCH 3

1.3 Gibbs Sampling Methods for Motif Search

Having identified our problem and the method by which we were going to attack it, we
next set out to implement the motif algorithm. The basic idea is simple enough, to find
the minimal Hamming distance (simple deviation from the motif string) and most common
motif in the same pass. Gibbs sampling helps tremendously here by allowing us to use the
sample input to build our state space. From the sample, we build out a state space of every
possible k-length motif for each position. From here our approach split into two proposals.

In the first method we tested, we built a target profile (randomly in the first pass) and
then successively improved the profile each round by setting it to the best possible profile
in that generation and then repeating this process until we had reached maximum im-
provement. In the second method we tested, we sampled the new state according to the
probability distribution computed at each position in each generation and selected the mode
for our new motif in the next generation. While this does not guarantee the information
gain of P1, the best position still generally has the highest chance of being selected while
other positions can also be picked.

Loosely speaking, Proposal 1.1 (P1) is a classical greedy algorithm, whereas Proposal 1.2
(P2) converges much more slowly (but is proved more robust for reasons we will go into
shortly). Notice that P1 and P2 only differ at line 9.

To evaluate the result, we use information - which is the opposite to entropy. The in-
formation is a real-value quantity taken value from 0 to 2 where 0 indicates no information
and 2 indicates a perfect match across p sequences. Here we consider average information
(i.e. the sum of information values for all k-length motifs divided by k). We plotted the
information gain of each step against the number of iterations to produce the graphs in the
following section.

We wrote our initial implementation in Matlab but switched to C++ in order to improve
the performance of our code. One thing we added to the above was implementing Laplace
smoothing on the motif space before starting P1/P2 to eliminate the possibility of zero-
probability zones. We indeed tested and realized that smoothing the profile matrix always
yields a better a result compared to non-smoothing one.

Since both P1 and P2 are stochastic, a common technique is to initialize many starting
states (i.e. run many Gibbs samplers) so that the expected outcome reaches the optimal
result. When working with less initializations and a shorter target motif (k = 6), P1 per-
formed significantly better than P2, which could not even find a solution in this smaller
state space.

1.4 Results and Visualization

We have tested both methods on 12 files (i.e. 12 sets of sequences) with different configu-
rations (e.g. motif length, number of chains). Due to space limits, we only show some of
the results, but the whole dataset is available on the server and they can be reproduced
easily by running our code. Other results behave similarly. We used the web logo tool
http://weblogo.berkeley.edu/logo.cgi to visualize the output of our test runs. For

<http://weblogo.berkeley.edu/logo.cgi>
http://weblogo.berkeley.edu/logo.cgi

4 CHAPTER 1. MCMC FOR MOTIF SEARCH

example, Fig.1.3 is the P1 results with k = 13 and k = 17, respectively. Likewise, Fig.1.4 is
the P2 results with k = 13 and k = 17, respectively. Both of them run 50 chains. Fig.1.5
and 1.6 are respectively P1 and P2’s results with k = 13 and k = 17 using 6 chains.

In Fig.1.1, we plot the information versus iterations for each proposal. We run 6 chains
(Gibbs samplers) and use a short motif of length 6. As we can see that P1 reaches its
optimum very fast and converges while P2 oscillates a lot and does not converge. However,
when using a larger number of initializations (50) and larger motif lengths (13 and 17),
respectively, we can see more clearly the difference between the two approaches. As can
be seen in Fig.1.2, P1 quickly hits its maximum potential, whereas P2 continues to slowly
improve as it gets deeper into the search process. Even though this requires more cycles,
we feel this method is a better choice because it has less danger of getting stuck on local
maxima (a common problem with greedy algorithms). The P1 approach could be improved
with traditional solutions such as random restarts, but this technique does not help too
much because the number of initializations needed grows exponentially with the number of
sequences as well as the length of each sequence. As far as for finding motifs in general, we
found that both these methods were relatively stable between different sequence lengths.
However, they did not output the same sequences in the same test data.

Recall the last paragraph from the previous section and based on Fig.1.3, 1.4, 1.5, 1.6,
it seems that P1 outperforms P2 on short motifs and P2 works better than P1 on long
motifs. One possible explanation for this phenomenon is as follows. For long motifs (e.g.
k = 13 or k = 17), graph of the information versus state space has only a few peaks. Hence,
a greedy algorithm like P1 easily gets stuck in the local optimum and cannot escape from it,
whereas P2 has a chance to step back and go forward to find an improved optimum. Nev-
ertheless, for short motif search (e.g. k = 6), the information versus state space graph has
many peaks and these peaks are almost at very similar height. Thus, the greedy strategy
of P1 helps it reach the maxima quickly and stably. P2, on the other hand, keeps jumping
across these valleys due to its stochasticity.

It is interesting to note that these two methods did not identify the same motifs even
though the two samples above are from the same DNA sequence. We would like to test our
algorithm on a known good sample before declaring authoritatively which method is better.
Having said that, we believe that proposal 2, the less greedy search algorithm, would be our
preferred candidate because it has less chance of getting caught in local maxima. As such,
we would recommend it going forward, especially in bioinformatics, where longer sequences
and motif search patterns are likely to be encountered.

1.5 Implementation Discussion

Throughout the implementation process, we recommend these implementation tricks. Firstly,
we do not need to build the profile matrix from scratch. Instead, we can update it from the
last iteration because they only differ in two sequences. What we need to do is to update
the change of matrix entries caused by these two sequences. The same technique can also
be applied in the evaluation process, where we need to give a score to a state.

The second issue is that to avoid too many floating point multiplications when dealing

1.5. IMPLEMENTATION DISCUSSION 5

with calculating probability for each position, we suggest to take the log of probability to
reduce from product to sum of terms, which is significantly more efficient. Moreover, since
the only concern is the frequency, not really probability, we can use integer operations to
speed up so that floating point operations do not appear in proposal 1 and only occur during
re-sample step (line 9) in Proposal 2.

Figure 1.1: Proposal 1 versus Proposal 2 on a short motif

6 CHAPTER 1. MCMC FOR MOTIF SEARCH

Figure 1.2: Proposal 1 versus Proposal 2 on a long motif

1.5. IMPLEMENTATION DISCUSSION 7

Figure 1.3: Proposal 1 motif result for k = 13 and k = 17 from dataset M00931

Figure 1.4: Proposal 2 motif result for k = 13 and k = 17 from dataset M00931

8 CHAPTER 1. MCMC FOR MOTIF SEARCH

Figure 1.5: Proposal 1 motif result for k = 13 and k = 17 from dataset M00971

Figure 1.6: Proposal 2 motif result for k = 13 and k = 17 from dataset M00971

Chapter 2

Using Hill Climbing and
Simulated Annealing for
Travelling Salesman Problem

2.1 Abstract

We experimented with solving the Traveling Salesman Problem (TSP) using two methods:
Hill Climbing and Simulated Annealing. We improved Hill Climbing slightly by adding
random restarts and testing two different methods of generating candidate moves: swaps
and flips. We also employed these candidate methods with Simulated Annealing as well as
tweaking the cooling rate. Both methods produced results close to optimum rapidly, though
Simulated Annealing ultimately did slightly better due to its stochastic nature as opposed
to Hill Climbing’s greedy algorithm. In addition, the flip method (reversing strings) of
generating candidate moves produced slightly better results.

2.2 Introduction

The TSP is a well-known classical problem in computer science. Given a set of cities and the
distances between every (or some) pairs of them, a salesman needs to start from a particular
city, visit all other cities and return the initial city at the end by the shortest possible tour.
While this concept seems relatively mundane, it has a number of real world applications in
such as simplifying the construction of microchips or (when modified slightly) figuring out
the shortest distance between two sequences of DNA for gene recognition.

The TSP is better known in mathematics as a form of the Hamiltonian cycle. From a
computer science perspective, it is a NP-hard problem: the only known method of pro-
ducing provably optimal solutions is by enumerating every possible path and selecting the
shortest one. This brute force approach has factorial complexity and can only be applied
for very small datasets: as the number of cities increases the problem quickly becomes in-
tractable. As such, simpler methods of attacking the problem are desired. We tested two of
them for our project.

9

10 CHAPTER 2. HILL CLIMBING AND SIMULATED ANNEALING FOR TSP

Hill Climbing is one of the classical greedy algorithms. Simply put, we begin with some
starting state (in this case, a tour) and then examine the local neighborhood of this state
space (generate a slightly different tour and calculate its length). We can either find the
most directly uphill direction (steepest gradient) or simply take any direction that will pro-
duce improvement (first best/random choice) and take a step in that direction. Then, we
repeat this cycle until we can no longer improve our solution. At the end, we are at the
top of the hill and declare the optimal solution. If the objective function is convex (it has
only one optimum), Hill Climbing is guaranteed to give the global optima. However, in the
real world example of the TSP, this condition does not hold so Hill Climbing will only find
a local optima.

Simulated Annealing is another classical algorithm exploiting stochastic mechanism. To
avoid getting stuck into a local optimum, Simulated Annealing uses the Boltzmann model –
a cooling schedule to gradually reduce the temperature – to give an opportunity to escape
local optima by accepting a worse state with probability depending on both the state value
difference and temperature. Unlike Hill Climbing, which always chooses a better state at
each step, Simulated Annealing may choose a sub-optimal state with the hope that from
this state, it can climb to another optimal state.

In addition to the above methods, we tested two methods of generating candidate moves,
Two-Swap and Two-Flip. In the first, we selected two cities at random and swapped their
places in the tour. This in turn altered four paths (Fig.2.1a) and produced results quicker
but less stable (it produced more change, but this was ultimately less useful). The second
method we tested was also to select two cities at random as above but then reverse their
order in the tour instead (Fig.2.1b). For example, the tour ABCDEFA, upon selecting cities
B and E, would end up as AECDBFA in Two-Swap and AEDCBFA in Two-Flip. The
Two-Flip only changes two edges and hence is more stable than Two-Swap.

We also implemented two minor modifications to the above methods. First, we ran many
Hill Climbing algorithms with different random initial states and selected the best tour
among all results. Likewise, we also experimented with tweaking the cooling rate during the
Simulated Annealing process, which affects the algorithm significantly.

(a) Two-Swap Move (b) Two-Flip Move

Figure 2.1: Candidate move generation

2.3. MOVE SET 11

2.3 Move Set

Algorithm 2.1 Generate neighbors

1: function Generate-Move((x1, . . . , xN), a, b, f lip)
2: if flip = 0 then
3: return Two-Swap((x1, . . . , xN), a, b)
4: else
5: return Two-Flip((x1, . . . , xN), a, b)
6: end if
7: end function

8: function Two-Swap(X, a, b)
9: X ′ ← X

10: X ′(a)← X(b)
11: X ′(b)← X(a)
12: return X ′

13: end function

14: function Two-Flip(X, a, b)
15: X ′ ← X
16: N ← length(X)
17: i← a
18: while i 6= b do
19: X ′(i)← X((a+ b− i+N) mod N + 1)
20: i← i+ 1
21: if i > N then
22: i← 1
23: end if
24: end while
25: X ′(b)← X(a)
26: return X ′

27: end function

Algorithm 2.1 describes the two move generation methods we mentioned earlier. Note
that in our implementation, we only need to represent a tour as a sequence (x1, . . . , xN)
because we just simply duplicate x1 at the end to form a tour. Here we see that Two-Swap
is simpler but it introduces more changes and thus less stable. Two-Flip, on the other hand,
is a little more complicated but more stable because it only changes two edges.

2.4 Hill Climbing

The Hill Climbing algorithm is described in algorithm 2.3. In step 1, we randomly initialize
a tour. Because the distance matrix is fully connected, we can simply generate a random
permutation of N cities. Next, in the loop at line 6, we try to explore the neighborhood
of the current state by picking randomly K neighbors. The reason for this is because we
cannot try all the neighbors (i.e. choose all combinations of two cities to do the swap or

12 CHAPTER 2. HILL CLIMBING AND SIMULATED ANNEALING FOR TSP

Algorithm 2.2 Calculate tour length

1: function Tour-Length((x1, . . . , xN))
2: sum← D(xN , x1)
3: for i← 2 to N do
4: sum← sum +D(xi−1, xi)
5: end for
6: return sum
7: end function

Algorithm 2.3 Hill Climbing for Travelling Salesman Problem

Input:

− N , the number of cities

− D(i, j), the pairwise distance between ith city and jth city, 1 ≤ i, j ≤ N

− Parameters:

• R, the range of interchange, 1 ≤ R ≤ N
• K, the number of neighbors generated at each state, 1 ≤ K ≤

(
N
2

)
• flip ∈ {0, 1}, 2-swap move flip = 0 or 2-flip move flip = 1

Output: The best tour X̂ = (x̂1, x̂2, . . . , x̂N) with length L̂

1: Randomly initialize a tour X = (x1, x2, . . . , xN)
2: L← Tour-Length(X)
3: (X̂, L̂)← (X,L) . Optimal tour
4: repeat
5: flag ← true
6: for k ← 1 to K do . Try to explore K neighbors
7: a← Random(1, N) . Randomly choose one city
8: b← Random(a+ 1, a+R) mod N + 1

. Randomly choose another city within R in current tour
9: X ′ ← Generate-Move(X, a, b, flip) . Generate a move, 2-swap or 2-flip

10: L′ ← Tour-Length(X ′) . Length of new tour
11: if L′ < L̂ then . Minimize optimal tour
12: (X̂, L̂)← (X ′, L′)
13: flag ← false
14: end if
15: end for
16: (X,L)← (X̂, L̂)
17: until flag = true

2.5. SIMULATED ANNEALING 13

the flip). Line 11 optimizes the new state versus the current optimal state. The algorithm
repeats until we cannot find any better tour from the current state’s neighbors. From this
scheme, the major handicap of the algorithm’s success (find the global optimum) is at line
1, the initial random state. Therefore, we need to run the algorithm many times to “climb
the hill” from different places.

2.5 Simulated Annealing

Algorithm 2.4 sketches the outline of the Simulated Annealing. Starting at a random tour
at line 1, we just randomly pick one neighbor. If the neighbor tour is better, we accept
it. Otherwise, we will accept it with the probability exp

(
−∆L

T

)
, where ∆L = L′ − L. The

expression in 19 puts both quality of new tour compared to the current tour and temperature
into consideration. The temperature T keeps decreasing exponentially for each iteration as
in line 6. The algorithm keeps track of the best tour obtained so far and reports it after
exceeding a preset number of iterations. The Simulated Annealing is less sensitive to initial
tour than the Hill Climbing, but it requires a careful choice of initial temperature T0 and
the cooling rate r. Therefore, in our implementation, we tried different cooling rates and
also different initial tours.

2.6 Results and Visualization

The dataset consists of the 15 cities and 57 cities dataset, which is available at http://

people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html. We also implemented
a graphical program using FLTK and OpenGL to visualize the result. Fig.2.2 shows our Hill
Climbing result on 15 cities-dataset, using the Two-Swap move candidate generator. The
upper window on the left and on the right are respectively the current tour and the optimal
tour retuned by the algorithm. The lower window displays how the tour length changes
during each iteration of the algorithm. The program visualizes the result step by step and
Fig.2.2 just the initial step. Thus the left window is the initial tour. We mark changed
edges by yellow color and keep other edges’ colors unchanged (red). Due to space limits,
we only display some of our results, but all the results can be reproduced easily by running
our algorithm code to generate the output file and using the visualization program to load
the output file and display the result.

Fig.2.4 and 2.5 respectively show the result of the Simulated Annealing with Two-Swap
and Two-Flip. Figures from 2.6 to 2.9 show similar results of two algorithms and two move
generations on 57 cities-dataset.

2.7 Conclusion

Table 2.1 summaries our results.

<http://people.sc.fsu.edu/~jburkardt/datasets/ cities/cities.html>
http://people.sc.fsu.edu/~jburkardt/datasets/ cities/cities.html
<http://people.sc.fsu.edu/~jburkardt/datasets/ cities/cities.html>
http://people.sc.fsu.edu/~jburkardt/datasets/ cities/cities.html

14 CHAPTER 2. HILL CLIMBING AND SIMULATED ANNEALING FOR TSP

Algorithm 2.4 Simulated Annealing for Travelling Salesman Problem

Input:

− N , the number of cities

− D(i, j), the pairwise distance between ith city and jth city, 1 ≤ i, j ≤ N

− Parameters:

• R, the range of interchange, 1 ≤ R ≤ N
• flip ∈ {0, 1}, 2-swap move flip = 0 or 2-flip move flip = 1

• T0, initial temperature

• r, cooling rate, r ∈ (0, 1)

• itermax, the maximum number of iterations

Output: The best tour X̂ = (x̂1, x̂2, . . . , x̂N) with length L̂

1: Randomly initialize a tour X = (x1, x2, . . . , xN)
2: L← Tour-Length(X)
3: (X̂, L̂)← (X,L) . Optimal tour
4: i← 0 . Current iteration
5: repeat
6: T ← T0 × ri
7: i← i+ 1
8: a← Random(1, N) . Randomly choose one city
9: b← Random(a+ 1, a+R) mod N + 1

. Randomly choose another city within R in current tour
10: X ′ ← Generate-Move(X, a, b, flip) . Generate a move, 2-swap or 2-flip
11: L′ ← Tour-Length(X ′) . Length of new tour
12: if L′ < L then
13: (X,L)← (X ′, L′)
14: if L < L̂ then . Minimize optimal tour
15: (X̂, L̂)← (X,L)
16: end if
17: else
18: u← Random-Uniform(0, 1)

19: if u ≤ exp
(
−L

′−L
T

)
then . Accept a worse tour with some probability

20: (X,L)← (X ′, L′)
21: end if
22: end if
23: until i > itermax

2.7. CONCLUSION 15

Table 2.1: Tour Length Result Summary

Method 15 cities 57 cities
Optimal Tour 291 Unknown

Hill Climbing
Two-Swap 291 15,157
Two-Flip 291 13,399

Simulated Annealing
Two-Swap 291 13,690
Two-Flip 291 13,059

Figure 2.2: Hill Climbing using Two-Swap on 15 cities-dataset

16 CHAPTER 2. HILL CLIMBING AND SIMULATED ANNEALING FOR TSP

Figure 2.3: Hill Climbing using Two-Flip on 15 cities-dataset

Figure 2.4: Simulated Annealing using Two-Swap on 15 cities-dataset

2.7. CONCLUSION 17

Figure 2.5: Simulated Annealing using Two-Flip on 15 cities-dataset

Figure 2.6: Hill Climbing using Two-Swap on 57 cities-dataset

18 CHAPTER 2. HILL CLIMBING AND SIMULATED ANNEALING FOR TSP

Figure 2.7: Hill Climbing using Two-Flip on 57 cities-dataset

Figure 2.8: Simulated Annealing using Two-Swap on 57 cities-dataset

2.7. CONCLUSION 19

Figure 2.9: Simulated Annealing using Two-Flip on 57 cities-dataset

Chapter 3

Sequence Alignment by
Dynamic Programming

3.1 Abstract

We implemented the Needleman-Wunsch algorithm to find the similarity of two protein
sequences. We tested two methods, global and local alignment and found good results with
both (the methods should differ only in complexity). Finally, we implemented a visualizer
for the two aligned sequences as well as a MATLAB representation of the updates of the
scoring matrix and demonstrate them with our test data.

3.2 Introduction

3.2.1 Dynamic Programming

Dynamic programming is a method by which a larger problem is solved by first solving
smaller, partial versions of the problem. By gradually increasing the scope of the initial
starting point it builds the solution bottom-up. As such, dynamic programming has some
similarity with the Divide and Conquer paradigm. However, dynamic programming is dif-
ferent from this approach in that in divide and conquer, the sub-problems are disjoint or
separable so they can be solved in parallel without knowing the global state. Whereas, in
dynamic programming the sub-problems overlap each other and need to be solved sequen-
tially in a particular order. As such, the two most basic questions in dynamic program-
ming are how to divide the problem into sub-problems and then how to solve them. By
breaking the problem up correctly and combining the solutions of these overlapping smaller
sub-problems, the solution of the larger problem can be found and guaranteed to be optimal.

In bioinformatics, dynamic programming is commonly used for several tasks such as se-
quence alignment, protein folding, RNA structure prediction, etc. It is this first case that
we investigate in this report.

20

3.3. SEQUENCE ALIGNMENT ALGORITHM 21

3.2.2 Sequence Alignment

Sequence alignment arises in many fields, like molecular biology, inexact text matching and
speech recognition. In molecular biology, it is a way of arranging protein, DNA or RNA to
identify regions of similarity that may be a consequence of functional, structural, or evolu-
tionary relationships between the sequences.

Aligning protein sequences allows us to compare a set of sequences based on their distance,
giving information about their possible relationships, similarities and differences. While a
common dynamic programming approach for sequence alignment is based on edit distance,
in which two strings are compared by measuring the number of edits needed to reach parity,
we use an opposite concept – similarity of two sequences, and as such we need to find an
optimal alignment that maximizes the similarity score.

3.3 Sequence Alignment Algorithm

3.3.1 Preliminary

Figure 3.1: An amino acid scoring matrix: BLOSUM62

Definition 1. Assume we are working on 1-based index system.

• X and Y are two that sequences need aligning. They have length m and n respectively.

• Xi – the ith character of sequence X (1 ≤ i ≤ m)

22 CHAPTER 3. SEQUENCE ALIGNMENT BY DYNAMIC PROGRAMMING

• Yj – the jth character of sequence Y (1 ≤ j ≤ n)

• s(Xi, Yj) – the score for aligning character Xi with Yj

• gap – the gap score for aligning any character to a null

Definition 1 gives us everything for presenting our algorithm, except the score element
s(Xi, Yj). In normal case, one would simply assign s(Xi, Yj) to some positive number if
Xi = Yj , otherwise set s(Xi, Yj) to 0 or some negative number for a penalty if needed. Nev-
ertheless, in bioinformatics in general and amino-acids in particular, people prefer to use the
BLOSUM (BLOcks SUbstitution Matrix) matrix to represent the score of aligning amino-
acids. The matrix construction is based on evolutionary divergence of protein sequences
whose details are out of scope and will not be discussed here. Fig.3.1 shows the BLOSUM62
matrix, a miscalculated version of original BLOSUM matrix that surprisingly yields better
search performance. Due to symmetry, it suffices to display the lower triangle of the matrix.
Therefore, for now, we define s(Xi, Yj) = B(Xi, Yj), where B is the BLOSUM62 matrix.

Let X̂ and Ŷ be an alignment (X̂ and Ŷ must have the same length). The score for
this alignment is calculated as following.

Score(X̂, Ŷ) =
∑
i

s(X̂i, Ŷi) (3.1)

In [3.1], we have extended the definition of s(x, y) to allow either x or y to be null. Based
on applications, we have global alignment and local alignment. Global alignments, which
attempt to align every residue in every sequence, are most useful when the sequences in the
query set are similar and of roughly equal size (this does not mean global alignments cannot
end in gaps). Local alignments are more useful for dissimilar sequences that are suspected to
contain regions of similarity or similar sequence motifs within their larger sequence context.

3.3.2 Global Alignment

Definition 2. Let the scoring matrix S be an m × n matrix and S(i, j) be the maximum
score of aligning the sub-sequences X1..i with Y1..j , then S(i, j) can be computed by the
following recurrence.

S(i, j) = max


S(i− 1, j − 1) + s(Xi, Yj) if align Xi to Yj

S(i− 1, j) + gap(Xi, null) if align Xi to null

S(i, j − 1) + gap(null, Yj) if align null to Yj

(3.2)

To understand how this works, let us have a look at the last characters of X1..i and Y1..j .
Fig.3.2 demonstrates an example of this scenario. To align these two sub-sequences, there
are only three possibilities:

1. Xi is aligned with Yj , which tells that the score for alignment these two sub-sequences
is the score of aligning the sub-sequence X1..(i−1) with Y1..(j−1) plus the score of
aligning Xi and Yj .

2. Xi is aligned with null, the score for this case equals the score of aligning X1..(i−1)

with Y1..j plus the score of aligning Xi with null.

3.3. SEQUENCE ALIGNMENT ALGORITHM 23

Figure 3.2: Sub-problems

3. null is aligned with Yj , the score for this case equals the score of aligning X1..i with
Y1..(j−1) plus the score of aligning null with Yj .

To optimize S(i, j), we simply choose the maximum value among the three cases. The
solution of our original problem is S(m,n). In order to obtain the aligned sequences, we
need to trace back the scoring matrix S. The trace begins that the bottom right corner of
S and stops when reaching the top left corner. At each step, we trace from S(i, j) to one of
the three directions (diagonal, up, left) depending on which direction optimizes S(i, j) and
at the same time construct the aligned sequences accordingly. Pseudo-code of the process
is presented in algorithm 3.1.

3.3.3 Local Alignment

The local sequence alignment problem, in fact, can be solved by some modifications of the
preceding algorithm. The first change is the definition of the scoring matrix.

Definition 3. Let the scoring matrix S be an m × n matrix and S(i, j) be the maximum
score of locally aligning the sub-sequences X1..i with Y1..j , then S(i, j) can be computed by
the following recurrence.

S(i, j) = max


0 No alignment

S(i− 1, j − 1) + s(Xi, Yj) if align Xi to Yj

S(i− 1, j) + gap(Xi, null) if align Xi to null

S(i, j − 1) + gap(null, Yj) if align null to Yj

(3.3)

Adding 0 to the maximization of S(i, j) allows X1..i and Y1..j to be the prefix of another
local alignment. The second modification is that the solution is no longer the bottom right
corner of S, but the largest element of it. Furthermore, when tracing back starting at the
position of the maximum value, we should stop whenever reaching element 0. Algorithm
3.2 describes exactly what we use for local alignment.

Note that based on this scoring matrix, we can find as many local optimal alignments
as we can. After the best local alignment is detected, the scoring matrix is divided into
9 regions. Excluding the region defined by the best local alignment, the remaining local
alignments are among 8 regions. Since we do not want overlapping local alignments, these
regions reduce to 4. Intuitively, the best local alignment leave the original two sequences
into two disjoint sub-sequences. The second best local alignment must be in these four cases

24 CHAPTER 3. SEQUENCE ALIGNMENT BY DYNAMIC PROGRAMMING

corresponding to 4 regions above. Thus, we can find the maximum element of the scoring
matrix in these 4 regions and trace back by applying the same method when detecting the
best one. Similarly, we can find as many local alignments as needed. In our implementation,
we find the best and the second best alignments.

3.4 Results and Visualization

We tested our algorithms on the following two sequences.
MVSQRQRLARKRYKAEHPELFPKPEPTPPKDPEKKKKKKKNSAFKRKRPEPKPGSRKRHPLRVPGMKPGESCFIC

KAMDHIAKLCPEKAEWEKNKICLRCRRRGHRAKNCPEVLDGAKDAMYCYNCGENGHSLTQCPHPLQEGGTKFAEC

FVCNQRGHLSKNCPQNTHGIYPKGGCCKICGGVTHLAKDCPDKGKSGSVAANRPADGWMRIEERPMGQVTKFVSG

DDIEDDFMTDDIHSGDKKKPAKSTEDHVKPKKKEGPKVVNF

QVKKHSKHCRTCNRCVEGFDHHCRWLNNCVGKRNYTAFFLLMIFLLIKGGTAIAIFIRCFVDRRGIEKELQRKLY

VDFPRGVLATICVFLLLLTAYSSAALGQLFFFHVVLIRKTNTHAIKSIIISLRKTYDYILAMKEENEAMELESFD

DSDFSSDESFDFDSPEKPTLMSGFLCKGNQGKKALLAAEKARERIMREKPMGEHNSLKPLPLETKCGPLMNTYKN

MDTEDFGSTSFIAKGRLNESPGRFSSPRRRFSAGSPTVFSSSMMASPHHKYRSSFDLKLTGVSRELETHISRQVL

CSVISKDDSEPSPR

Fig.3.3 shows the plot of global alignment scoring matrix. Its values vary from the minimum
value (blue part) to the maximum value (red part). The white path records the tracing path
from (m,n) to (0, 0). The resulting aligned sequences with the maximum global alignment
score of −370 are as following.

MVSQRQRLAR--KR-YKA-EHP-E-L---FPKPEPTPPKDPEKKKKKKKNSAFKRK-RP-EPKPGSRKRHPLRV

PGMKP-GESCFICKAMDHI-AKLCPEKAEWEKNKICLRCRRRGHRAKNC--P--EVLDG--A-KD---AM-Y-CY

NCGE-NG-HSLT-QCPH-P-LQEG----GTKFAECFVC-NQ-RGHLSKNCPQNTHGIYPKGGCCKICGGVTHLAK

--DCPDKGKSGSVAANR--PADG-WMRIEER-PMGQVTKFVSG--DDIEDDFMTD-DIH-SG-DKKKPAK-STED

HVKPKKKEGPKVVNF

QVKKHSKHCRTCNRCVEGFDHHCRWLNNCVGKRNYTAFFLLMIFLLIKGGTAIAIFIRCFVDRRGIEKELQRKL

YVDFPRGVLATICVFLLLLTAYSSAALGQLFFFHVVLIRKTNTHAIKSIIISLRKTYDYILAMKEENEAMELESF

DDSDFSSDESFDFDSPEKPTLMSGFLCKGNQGKKALLAAEKARERIMREKPMGEHNSLKPLPLETKCGPLMNTYK

NMDTEDFGSTSFIAKGRLNESPGRFSSPRRRFSAGSPTVFSSSMMASPHHKYRSSFDLKLTGVSRELETHISRQV

LCSVISKDDSEPSPR

Similarly, Fig.3.4 demonstrates the plot of local alignment scoring matrix from different
views. As expected, this matrix has several peaks corresponding to each local alignment.
The highest peak is the best local alignment. In our implementation, we detected the two
best local alignments with the scores of 44 and 42 respectively. They are as follows:

FAECFVCNQRGHLSKNCPQNTHGIYPKGGCCKIC

FIRCFV-DRRG-IEKELQRKLYVDFPRGVLATIC

RQRLARKRYKAEHPELFPKPEPT

RERIMREKPMGEHNSLKPLPLET

We also implemented a program to graphically visualize the two aligned sequences using

3.4. RESULTS AND VISUALIZATION 25

OpenGL. Due to space limits, we are not going to demonstrate screen shots here. We instead
put it on the server (as well as its source code) with the instructions on its usage.

Figure 3.3: Global alignment scoring matrix

(a) View 1

(b) View 2 (c) View 3

Figure 3.4: Local alignment scoring matrix

26 CHAPTER 3. SEQUENCE ALIGNMENT BY DYNAMIC PROGRAMMING

Algorithm 3.1 Dynamic Programming for Global Sequence Alignment

Input:

• X,Y – two sequences

• B(i, j) – the Blosum matrix containing the score of amino-acids i and j alignment,
i, j ∈ {A,R,N,D,C,Q,E,G,H, I, L,K,M,F, P, S, T,W, Y, V }

• gapscore – gap score (−10 in this project)

Output: The best global alignment score ŝ and the aligned sequences X̂, Ŷ

1: m← Length(X)
2: n← Length(Y)

. Initialization
3: Initialize S[0..m, 0..n], T [0..m, 0..n] . Score matrix and Trace matrix
4: for i← 0 to m do
5: S[i, 0]← i ∗ gapscore
6: T [i, 0]← 2
7: end for
8: for j ← 0 to n do
9: S[0, j]← j ∗ gapscore

10: T [0, j]← 3
11: end for

. Needleman-Wunsch algorithm
12: for i← 1 to m do
13: for j ← 1 to n do
14: s1 ← S[i− 1, j − 1] +B[X[i], Y [j]] . Xi aligned with Yj
15: s2 ← S[i− 1, j] + gapscore . Xi aligned with gap
16: s3 ← S[i, j − 1] + gapscore . gap aligned with Yj
17: S[i, j]← max

k∈{1,2,3}
sk . Choose optimal alignment

18: T [i, j]← arg max
k∈{1,2,3}

sk . Save the trace

19: end for
20: end for
21: ŝ← S[m,n] . Best alignment score

. Begin to trace back
22: X̂ ← empty string
23: Ŷ ← empty string
24: (i, j)← (m,n) . Start at the bottom right corner of the scoring matrix

3.4. RESULTS AND VISUALIZATION 27

Algorithm 3.1 Dynamic Programming for Global Sequence Alignment (continued)

25: while i ≥ 0 and j ≥ 0 do
26: if T [i, j] = 1 then . X[i] aligned with Yj
27: X̂ ← X[i] + X̂
28: Ŷ ← Y [j] + Ŷ
29: i← i− 1
30: j ← j − 1
31: else if T [i, j] = 2 then . Xi aligned with gap
32: X̂ ← X[i] + X̂
33: Ŷ ← gap + Ŷ
34: i← i− 1
35: else . gap aligned with Yj
36: X̂ ← gap + X̂
37: Ŷ ← Y [j] + Ŷ
38: j ← j − 1
39: end if
40: end while
41: return ŝ, X̂, Ŷ

28 CHAPTER 3. SEQUENCE ALIGNMENT BY DYNAMIC PROGRAMMING

Algorithm 3.2 Dynamic Programming for Local Sequence Alignment

Input:

• X,Y – two sequences

• B(i, j) – the Blosum matrix containing the score of amino-acids i and j alignment,
i, j ∈ {A,R,N,D,C,Q,E,G,H, I, L,K,M,F, P, S, T,W, Y, V }

• gapscore – gap score (−10 in this project)

Output: The best local alignment score ŝ and the aligned sequences X̂, Ŷ

1: m← Length(X)
2: n← Length(Y)

. Initialization
3: Initialize S[0..m, 0..n], T [0..m, 0..n] . Score matrix and Trace matrix
4: ŝ← 0
5: (u, v)← (0, 0)
6: for i← 0 to m do
7: S[i, 0]← 0
8: end for
9: for j ← 0 to n do

10: S[0, j]← 0
11: end for

. Smith-Waterman algorithm
12: for i← 1 to m do
13: for j ← 1 to n do
14: s0 ← 0 . No alignment, just keep it as prefix
15: s1 ← S[i− 1, j − 1] +B[X[i], Y [j]] . Xi aligned with Yj
16: s2 ← S[i− 1, j] + gapscore . Xi aligned with gap
17: s3 ← S[i, j − 1] + gapscore . gap aligned with Yj
18: S[i, j]← max

k∈{0,1,2,3}
sk . Choose optimal alignment

19: T [i, j]← arg max
k∈{0,1,2,3}

sk . Save the trace

20: if x̂ < S[i, j] then . Locate the maximum value
21: x̂← S[i, j]
22: (u, v)← (i, j)
23: end if
24: end for
25: end for

. Begin to trace back
26: X̂ ← empty string
27: Ŷ ← empty string

3.4. RESULTS AND VISUALIZATION 29

Algorithm 3.2 Dynamic Programming for Local Sequence Alignment (continued)

28: while u ≥ 0 and v ≥ 0 and S[u, v] 6= 0 do
29: if T [u, v] = 1 then . Xu aligned with Yv
30: X̂ ← X[u] + X̂
31: Ŷ ← Y [v] + Ŷ
32: u← u− 1
33: v ← v − 1
34: else if T [u, v] = 2 then . Xu aligned with gap
35: X̂ ← X[u] + X̂
36: Ŷ ← gap + Ŷ
37: u← u− 1
38: else if T [u, v] = 3 then . gap aligned with Yv
39: X̂ ← gap + X̂
40: Ŷ ← Y [v] + Ŷ
41: v ← v − 1
42: end if
43: end while
44: return ŝ, X̂, Ŷ

Chapter 4

Maximum Flow/Minimum Cut
by Linear Programming

4.1 Abstract

We experimented with solving a pair of graph-related problems, maximum flow and min-
imum cut, via linear/integer programming. By modeling the two problems as a series of
linear constraints, we then utilized an open-source simplex solving package (Lips IDE) to
find the optimal solution. We also compared the results obtained from linear/integer pro-
gramming with known polynomial-time algorithm (Edmonds-Karp) for solving maximum
flow problem.

4.2 Introduction

Graph/network problems are a rich intersection of computer science and mathematics. Be-
ginning with Euler’s Königsberg bridge problem in 1735, analysis of the simplification of
nodes (points on a graph) and edges (connections between points) has had ramifications in
a number of other fields such as abstract algebra and topology. In computer science, the
various networks that form the foundation of the internet lend themselves naturally to graph
theory. As such, graph problems have a number of real-world applications such as routing
algorithms for data networks or failure mode for telephone services. In addition, modeling
the social networks of people on online sites such as Facebook are another popular area of
modern analysis.

The maximum flow problem is common: given start/end (source/sink) nodes on a net-
work and knowledge of the capacity of each edge between them, figure out the set of flows
to produce the maximum flow at the end point. This basic problem can be transformed
into a number of other applications, such as minimum path cover and maximum matching
in bipartite graphs.

The minimum cut problem, on the other hand, involves finding the cut (set of edges to
be removed from the graph) that not only separates the source and sink but also has the
least possible combined weight of the edges removed. A popular recent application of mini-

30

4.3. MAXIMUM FLOW 31

mum cut problem is graph-cut based optimization, which solves the minimization of a wide
range of functions in image processing, computer graphics and computer vision.

Due to the duality theorem, these two problems are related: a maximum flow solution
can be converted to a minimum cut solution. This is accomplished by grouping the vertices
reachable from s in the residual graph Gf = (V,E), where ef (u, v) = c(u, v) − f(u, v), as
S and the remaining as T . As a result, the set of cut edges contains the edges across S and T .

Linear programming (or more precisely linear optimization) is a mathematical method of
determining the optimal state of a set of variables given a linear objective function subject to
a set of linear equalities/inequalities as constraints. Loosely, the constraints form a convex
polygon in the solution space and then we attempt to optimize the objective function in this
space. The simplex method, first proposed by Dantzig, walks along the edges of the convex
polygon until it finds a maximum state. If the initial set of constraints is done properly, this
method can rapidly produce a solution. As such, the design of objective function (which
will be optimized) and constraints are the most important part of linear programming, by
which a complex problem is modelled in a standard form which can be efficiently solved by
many numerical algorithms.

4.3 Maximum Flow

Linear Programming of Max-Flow problem

max
fff

∑
(s,v)∈E

f(s, v)

subject to

f(u, v) ≥ 0, ∀(u, v) ∈ E
f(u, v) ≤ c(u, v), ∀(u, v) ∈ E∑

(u,v)∈E

f(u, v) =
∑

(v,u)∈E

f(v, u), ∀v ∈ V \ {s, t}

(4.1a)

(4.1b)

(4.1c)

(4.1d)

Given a graph (V,E), the source s and the sink t, the capacity c(u, v) for each edge (u, v) ∈ E,
we need to determine the flow on each edge. Thus, we introduce the variables f(u, v) for all
edges (u, v) ∈ E. The goal of Max-flow problem is to maximize the total flow going through
the network. It can be shown that this flow is the sum of all flows going out of the source s
(or the sum of all flows going into the sink t, i.e.

∑
(s,v)∈E

f(s, v) =
∑

(v,t)∈E
f(v, t)). This goal

can be mathematically expressed as the objective function in (4.1a). Due to basic properties
of flow, the flow fff must satisfy the following constraints.

1. The flow along an edge is greater than/equal to zero (4.1b)

2. The flow along an edge is less than the capacity of the edge (4.1c)

3. The total flow into any vertex other than s and t is equal to the total flow out of it
(flow conservation and hence vertices do not have reservoirs to store flow) (4.1d)

32 CHAPTER 4. MAX-FLOW/MIN-CUT BY LINEAR PROGRAMMING

With these constraints, (4.1a), (4.1b), (4.1c) and (4.1d) form a linear programming problem.
However, the resulting maximum flow may not be integer (i.e. there may exist some edge
(u, v) such that f(u, v) /∈ Z), which is abnormal in many real applications. To enforce the
flow integral, we add another constraint as in (4.2e). This modification results in the integer
programming as following.

Integer Programming of Max-Flow problem

max
fff

∑
(s,v)∈E

f(s, v)

subject to

f(u, v) ≥ 0, ∀(u, v) ∈ E
f(u, v) ≤ c(u, v), ∀(u, v) ∈ E∑

(u,v)∈E

f(u, v) =
∑

(v,u)∈E

f(v, u), ∀v ∈ V \ {s, t}

f(u, v) ∈ Z+, ∀(u, v) ∈ E

(4.2a)

(4.2b)

(4.2c)

(4.2d)

(4.2e)

4.4 Minimum Cut

In graph theory, given an undirected graph G = (V,E), the capacity cu,v for each edge
(u, v) ∈ E, two vertices s, t ∈ V , a cut (S, T) is a partition of V into two disjoint sets S and
T (i.e. S ∩ T = ∅) such that s ∈ S and t ∈ T . The cost of a cut (S, T) is defined as

cost(S, T) =
∑
i∈S

∑
j∈T

ci,j (4.3)

Then, the minimum cut problem is to find the cut with the smallest cost. To model a cut
(S, T), we first introduce binary variables di,j for all edges (i, j) ∈ E. We want di,j = 1 if
edge (i, j) is cut, otherwise di,j = 0; Thus the objective of the minimum cut problem can
be mathematically expressed as function in 4.4a. We also introduce binary variables pi for
each vertex i ∈ V that encodes the set which vertex ith belongs to (i.e. pi = 0 if i ∈ S,
pi = 1 otherwise). The constraints 4.4b and 4.4c are definitions of the two sets of binary
variables we have just mentioned.

However, we do not know the cut (S, T) beforehand, we want to explore the relationship
between ddd and ppp. We observe that if vertex ith and vertex jth are in different sets, e.g. i ∈ T
and j ∈ S (i.e. pi = 1 and pj = 0), edge (i, j) must be cut (i.e. di,j = 1). To enforce this
relationship, we add another constraint as in 4.4d. There are two cases to discuss here.

• If i and j are in the same set, we have −pi + pj = 0, hence di,j can be either 0 or 1.
However, if di,j = 1, the cost for this cut is not minimized because we add a positive
constant ci,j to the objective function. Thus, the minimizer will force di,j = 0 or, in
other words, preserve the edges between same set’s vertices.

• What happens if i ∈ S and j ∈ T? In this case, −pi+pj = 1, so di,j can also be either
0 or 1. With similar argument as above, the minimizer will keep di,j = 0 and it seems
to violate the cut definition. However, we will show that this is not the case. Recall
that the graph G is undirected, so if the edge (i, j) ∈ E, so does the edge (j, i). In

4.5. RESULTS AND EVALUATION 33

this case, di,j = 0 for the constraint on edge (i, j) but dj,i = 1 for the constraint on
edge (j, i). The combined result tells that edge (i, j) is still cut. Moreover, the cost to
cut this edge is counted once as di,j = 0 and dj,i = 1. Therefore, the overall designs
of the constraint (4.4d) and objective function (4.4a) are enough to cover all cases.

Since we know that s ∈ S and t ∈ T (i.e. ps = 0 and pt = 1), it is straightforward to
introduce the last constraint (4.4e).

Integer Programming of Min-Cut problem

min
ddd,ppp

∑
(i,j)∈E

ci,j di,j

subject to

di,j ∈ {0, 1}, ∀(i, j) ∈ E
pi ∈ {0, 1}, ∀i ∈ V

di,j − pi + pj ≥ 0, ∀(i, j) ∈ E
pt − ps = 1

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

4.5 Results and Evaluation

We are using LiPS software to solve our problems. All we need to do is generate lpx scripts
that are supported by the software. To handle the problem with big number of nodes, we
are writing a MATLAB programs, maxflow.m and mincut.m, that automatically generate lpx
scripts from standard graph. You can get these MATLAB code in Appendix session. The
standard input text file describes the structure of the graph. The first row contains four
numbers that represent the number of vertices |V |, the number of edges number |E|, source
s and sink t of the graph. In the next |E| rows, each row describes an edge between two
vertices with its capacity.

In order to validate and visualize our results we utilized a python open source package,
GraphTool (available at: http://graph-tool.skewed.de). We converted our sample graph
to the file format used by the program and then wrote a simple solver utilizing the Edmonds-
Karp algorithm. Next, we utilized GraphTool’s builtin utilities to visualize our graph.

We tested on the graph in Fig.4.1a. For the max flow algorithm, GraphTool produced
the visualization in Fig.4.1b, with line widths sized relative to the flow in the final graph,
with the same result as our linear programming approach.

Likewise, for minimum cut, GraphTool produced the same end result, with blue and red
corresponding to the source set and sink set (Fig.4.1c).

<http://graph-tool.skewed.de>
http://graph-tool.skewed.de

34 CHAPTER 4. MAX-FLOW/MIN-CUT BY LINEAR PROGRAMMING

(a) Original Graph

(b) Maximum Flow result

(c) Minimum Cut result

Figure 4.1: Max-Flow and Min-Cut result

Chapter 5

Implementing a Small Support
Vector Machine

5.1 Abstract

We implement a small Support Vector Machine (SVM) utilizing Sequential Minimal Opti-
mization (SMO) and Gradient Descent to classify/predict the incidence of diabetes from a
known dataset. We implement a second SVM utilizing gradient descent in Matlab as well
as another utilizing open-source package SVM-Light as a benchmark. Finally, we compare
and contrast our results on a known data set and demonstrate a visualization of the SMO
process by MATLAB.

5.2 Introduction

Support Vector Machines, invented by Vladimir N. Vapnik, are a popular modern technique
utilized in machine learning. In its basic form, a SVM attempts to find a way of splitting two
data sets via a line drawn in one of the dimensions of the data set. However, real world data
sets rarely can be so cleanly divided. As such, the next improvement to the SVM method
was the introduction of non-linear kernels, which map the state space to higher dimensions
(where technically they are split there linearly). The soft margin technique (proposed by
Vapnik in 1995) is the next major improvement to the algorithm which, by assigning a small
penalty to misclassified data, allows the SVM to assign a score to each possible solution.
Afterwards, the next improvement is simply to find the smallest possible score and by ex-
tension optimal state to the classification vector.

Basically, the task is to

min
www∈F,b∈R,ξξξ∈Rm

1

2
‖www‖+ C

m∑
i=1

ξi (5.1a)

subject to y(i)
(
〈www,φφφ(x(i)x(i)x(i))〉+ b

)
≥ 1− ξi, ∀i = 1, . . . ,m (5.1b)

ξi ≥ 0, ∀i = 1, . . . ,m (5.1c)

35

36 CHAPTER 5. IMPLEMENTING A SMALL SVM

where C is a parameter for balancing how large the margins are and how many data points
allowed to be misclassified or within the margin.

By introducing a Lagrange function, we transform the problem (5.1) to the dual problem of
maximizing the following constrained quadratic optimization

max
ααα∈Rm

W (ααα) =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjy
(i)y(j)K(xxx(i),xxx(j)) (5.2a)

subject to

m∑
i=1

αiy
(i) = 0 (5.2b)

0 ≤ αi ≤ C, ∀i = 1, . . . ,m (5.2c)

where K(xxx(i),xxx(j)) = 〈φφφ(xxx(i)),φφφ(xxx(j))〉 is the (potentially nonlinear) kernel. From now, for
shorthand, we use Ki,j = K(xxx(i),xxx(j))

The decision function given a new data point zzz is

f(zzz) =

m∑
i=1

αiy
(i)K(φφφ(xxx(i)),φφφ(zzz)) + b (5.3)

We investigated three different methods of finding the optimal solution of above constrained
quadratic problem. We surveyed Gradient Descent and Quadratic Programming as well as
Sequential Minimum Optimization, a significant modern improvement. Gradient Descent is
a classical optimization technique dating back to Newton whereby we estimate the rate of
change in the local neighborhood of the current state and then use this to choose a new state
for investigation. It is very simple and easy to implement. Usually, it makes good progress
when it is far away from the optimum but it becomes slower when it is close to the optimal
solution. Quadratic Programming is a significant improvement to this approach but it does
not scale well for large datasets as its complexity is O(m3), where m is the number of data
points. In the following section, we are going to present SMO and Gradient Descent.

5.3 Sequential Minimal Optimization

5.3.1 KKT condition

The SMO algorithm gives an efficient way of solving the dual problem of the (regularized)
SVM optimization problem. The KKT condition can be check for convergence to the optimal
point. For this problem, the KKT conditions are

αi = 0→ y(i)(〈www,φφφ(xxx(i))〉+ b) ≥ 1 (5.4a)

αi = C → y(i)(〈www,φφφ(xxx(i))〉+ b) ≤ 1 (5.4b)

0 < αi < C → y(i)(〈www,φφφ(xxx(i))〉+ b) = 1 (5.4c)

Replacing (5.3), we can rewrite the KKT conditions as

αi = 0→ y(i)f(xxx(i)) ≥ 1 (5.5a)

αi = C → y(i)f(xxx(i)) ≤ 1 (5.5b)

0 < αi < C → y(i)f(xxx(i)) = 1 (5.5c)

5.3. SEQUENTIAL MINIMAL OPTIMIZATION 37

5.3.2 Optimizing Alphas

The quadratic problem contains multiple dimensional variables. The idea of SMO algorithm
is to break the problem into multiple sub problems that can be solved analytically. From
the constraint (5.2b), it is impossible to change one αi without violating this constraint.
By allowing only two alphas changed at a time, we transform it to only one dimensional
quadratic problem due to the constraint (5.2b).

There are some more sophisticated heuristic improvements to choose which αi and αj in
order to maximize the objective function as quickly as possible. However, in the scope of
this project we utilize a simpler heuristic. We simply pick the first points that violates the
KKT conditions in (5.5) and randomly choose the second one from the m − 1 remaining
parameters. Then we attempt to maximize

W (αi, αj) = αi + αj −
1

2
Ki,jα

2
i −

1

2
Kj,jα

2
j − sKi,jαiαj − y(i)αivi − y(j)αjvj +Wconstant

(5.6a)

αiyi + αjyj = k (5.6b)

0 ≤ αi, αj ≤ C (5.6c)

where

vl =

m∑
k=1
k 6=i,j

y(k)α
(old)
k Kk,l = f (old)(xxx(l)) + b(old) − y(i)α

(old)
i Kl,i − y(j)α

(old)
j Kl,j , for l = i, j

s = y(i)y(j)

Substituting (5.6b) into (5.6a) yields

W (αj) =k − sαj + αj −
1

2
Ki,i(k − sαj)2 − 1

2
Kj,jα

2
j

− sKi,j(k − sαj)αj − y(i)(k − sαj)vi − y(j)αjvj +Wconst (5.7)

Taking the derivative with respect to αj , equating to 0, we obtain

αj(Ki,i +Kj,j − 2Ki,j) = s(Ki,i −Ki,j)k + y(j)(vi − vj) + 1− s (5.8)

Or,

αj(Ki,i+Kj,j−2Ki,j) = α
(old)
j (Ki,i+Kj,j−2Ki,j)+y(j)(f(xxx(i))−f(xxx(j))+y(j)−y(i)) (5.9)

α
(new)
j = α

(old)
j − y(j)(Ei − Ej)

η
(5.10)

where η = Ki,i +Kj,j − 2Ki,j and El = f(xxx(l))− y(l)

38 CHAPTER 5. IMPLEMENTING A SMALL SVM

However, due to the constraint in (5.6c), α
(new)
j may not be satisfied. Note that the con-

straints of (5.6c) and (5.6b) infer the bounds [L,H] for α
(new)
j , where

L =

{
max(0, αj − αi) if y(i) 6= y(j)

max(αj + αi − C) if y(i) = y(j)
, H =

{
min(C,C + αj − αi) if y(i) 6= y(j)

min(C,αi + αj) if y(i) = y(j)

(5.11)

Thus, we can clip α
(new)
j to this [L,H] bounds by setting

α
(new)
j :=


L if α

(new)
j ≤ L

H if α
(new)
j ≥ H

α
(new)
j if L < α

(new)
j < H

(5.12)

Then, we update αi according to the constraint (5.6b), we have

α
(new)
i = α

(old)
i + y(i)y(j)(α

(old)
j − α(new)

j) (5.13)

Lastly, we need to update the bias b according to the KKT condition (5.5). If 0 < αi < C,
we can calculate b1. If 0 < αj < C, we can calculate b2. Otherwise, all b values between b1
and b2 make αi and αj satisfy the KKT condition. SMO picks the average value in this case.

Algorithm (5.1) sketches the outline of the SMO algorithm. The detailed version is in
algorithm (5.2).

5.4 Gradient Descent

Basically, we can solve for (5.2a) by substituting α1 from (5.2b) to the objective function.
We obtain the following objective function.

W (α2, . . . , αm) =

m∑
i=2

(1− y1yi)αi −
1

2

m∑
i=2

m∑
j=2

αiαjy
(i)y(j)(Ki,j +K1,1 − 2K1,i) (5.14)

We also calculate the gradient of objective function with respect to each αi, i = 2, . . . ,m

∂W

∂αi
= (2K1,i −Ki,i −K1,1)αi + 1− y(1)y(i) −

m∑
j=2
j 6=i

αjy
(j)y(i)(Ki,j +K1,1 −K1,j −K1,i)

(5.15)

= 1− y(1)y(i) −
m∑
j=2

αjy
(j)y(i)(Ki,j +K1,1 −K1,j −K1,i) (5.16)

for i = 2, . . . ,m Algorithm (5.3) describes a standard Gradient Descent algorithm that we
applied.

5.5 Results and Evaluation

In order to evaluate our implementation, we are using the diabetic dataset available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/diabetes. We use 70%

<http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/diabetes>
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/diabetes
<http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/diabetes>
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/diabetes

5.5. RESULTS AND EVALUATION 39

Algorithm 5.1 Sequential Minimal Optimization (short version)

Input:

• C, regularization parameter

• tol, numerical tolerance

• max passes, the maximum of times to iterate over α’s without changing

• {(x(i), y(i)), i = 1, . . . ,m}, training data

Output: α’s

1: αi ← 0,∀i, b← 0 . Initialization
2: passes← 0 . Initialization
3: while passes < max passes do
4: num changed alphas← 0
5: Iterate over αi to choose the first one violate KKT condition
6: Randomly choose j 6= i
7: Solve closed form solution for constrained quadratic problem

8: if |α(new)
j − α(old)

j | > tol then
9: Update bias b

10: num changed alphas← num changed alphas+ 1
11: end if
12: if num changed alphas = 0 then
13: passes← passes+ 1
14: else
15: passes← 0
16: end if
17: end while

Algorithm 5.2 Sequential Minimal Optimization (detailed version)

Input:

• C, regularization parameter

• tol, numerical tolerance

• max passes, the maximum of times to iterate over α’s without changing

• {(x(i), y(i)), i = 1, . . . ,m}, training data

Output: α’s

1: αi ← 0,∀i, b← 0 . Initialization
2: passes← 0 . Initialization
3: while passes < max passes do
4: num changed alphas← 0
5: for i← 1 to m do

6: Ei ←
m∑
t=1

αty
(t)K(x(t), x(i)) + b− y(i) . Ei = wTx(i) + b− y(i)

40 CHAPTER 5. IMPLEMENTING A SMALL SVM

Algorithm 5.2 Sequential Minimal Optimization (detailed version) (continued)

7: if (y(i)Ei < −tol ∧ αi < C) ∨ (y(i)Ei > tol ∧ αi > 0) then
8: Randomly choose j 6= i

9: Ej ←
m∑
t=1

αty
(t)K(x(t), x(j)) + b− y(j) . Ej = wTx(j) + b− y(j)

10: (α
(old)
i , α

(old)
j)← (αi, αj) . Save old αi, αj

11: if y(i) 6= y(j) then
12: (L,H)← (max(0, αj − αi),min(C,C + αj − αi))
13: else
14: (L,H)← (max(0, αi + αj − C),min(C,αi + αj))
15: end if
16: If L = H then
17: continue to next i
18: η ← 2K(x(i), x(j))−K(x(i), x(i))−K(x(j), x(j))
19: If η ≥ 0 then
20: continue to next i
21: αj ← αj − y(j)(Ei−Ej)

η . Find optimal αj by Newton’s method

22: αj ←


H if αj > H

αj if L ≤ αj ≤ H
L if αj < L

. Clip αj to [L,H]

23: If |αj − α(old)
j | < tol then

24: continue to next i
25: αi ← αi + y(i)y(j)(α

(old)
j − αj)

26: b1 ← b− Ei − y(i)(αi − α(old)
i)K(x(i), x(i))− y(j)(αj − α(old)

j)K(x(i), x(j))

27: b2 ← b− Ej − y(i)(αi − α(old)
i)K(x(i), x(j))− y(j)(αj − α(old)

j)K(x(j), x(j))

28: b←


b1 if 0 < αi < C

b2 if 0 < αj < C

(b1 + b2)/2 otherwise
29: num changed alphas← num changed alphas+ 1
30: end if
31: end for
32: if num changed alphas = 0 then
33: passes← passes+ 1
34: else
35: passes← 0
36: end if
37: end while

of the positive diabetes samples and 70% of the negative diabetes samples to form our
training dataset, with the remaining data points forming our testing dataset. Table (5.1)
summaries our results with SMO and Gradient Descent as well as our reference SVM-Light
and Quadratic Programming solutions.

5.5. RESULTS AND EVALUATION 41

Algorithm 5.3 Gradient Descent for QP

Input:

• C, regularization parameter

• η, learning rate

• tol, numerical tolerance

• max iterator, the maximum number of iterator

Output: α’s

1: αi ← rand(0, C),∀i, b← 0 . Initialization
2: k ← 0 . Initialization
3: while k < max iterator do
4: Compute gradient of objective function
5: α(k+1) ← α(k) + η∇W
6: Clip all α

(k+1)
i to the [0, C]

7: if ||α(k+1) − α(k)|| < tol then
8: break;
9: end if

10: end while

Table 5.1: Comparison of Various Methods for Training a SVM

GD SMO MATLAB GD SVM-Light QP
Accuracy on training set 63.45% 77.65% 63.45% 77.65% 77.65%
Accuracy on testing set 68.33% 78.33% 68.33% 78.33% 78.33%
Training time (seconds) 95.00 86.00 18.20 0.16 2.00

Number of SVs 10 10 10 9 9

42 CHAPTER 5. IMPLEMENTING A SMALL SVM

5.6 Visualization

Figure 5.1: Optimizing outcome function

Figure 5.2: Optimizing α values. Red indicates KKT violation

Figure 5.3: Final outcome function

Figure 5.4: Final α values

	Contents
	List of Figures
	List of Tables
	MCMC for Motif Search
	Abstract
	Introduction
	Gibbs Sampling Methods for Motif Search
	Results and Visualization
	Implementation Discussion

	Hill Climbing and Simulated Annealing for TSP
	Abstract
	Introduction
	Move Set
	Hill Climbing
	Simulated Annealing
	Results and Visualization
	Conclusion

	Sequence Alignment by Dynamic Programming
	Abstract
	Introduction
	Dynamic Programming
	Sequence Alignment

	Sequence Alignment Algorithm
	Preliminary
	Global Alignment
	Local Alignment

	Results and Visualization

	Max-Flow/Min-Cut by Linear Programming
	Abstract
	Introduction
	Maximum Flow
	Minimum Cut
	Results and Evaluation

	Implementing a Small SVM
	Abstract
	Introduction
	Sequential Minimal Optimization
	KKT condition
	Optimizing Alphas

	Gradient Descent
	Results and Evaluation
	Visualization

