solving go: 2019

brettkoonce.com/talks feburary 24th, 2019

go: overview

- discuss game, rules
- uct + random rollouts —> MCTS
- MCTS + policy + value —> Alpha Go
- policy + value + self-play —> Alpha Go Zero
- Alpha Go Zero Go —> Alpha Zero, demo

go: board

go: game/rules

- origin: asia, ~2500 years ago
- 19x19 board (361 squares), fill with stones
- squares + captures -> score (chinese)
- black 7.5 (komi) > white —> winner (no draws)
- ~300 moves -> ~1e170 game complexity (chess: ~1e50, # atoms in universe: ~1e80)

uct (2006)

- multi-armed bandit problem: how do you win most money from room of slot machines, given X quarters?
- basic idea: explore new machines (policy), calculate reward of a machine (value)
- ucb: put statistical bound on losses —> maximize gains

random rollouts (2009)

- take current board state, pick candidate move to explore/evaluate
- alternate adding stones randomly till both sides cannot play (pass)
- score via chinese rules —> move win/loss
 predictor —> update value of candidate move
- uct + random rollouts -> mcts -> solves go!
 (minor bug: universe will die of heat death first)

alpha go (2016)

alpha go: fan/lee/master

- engine/year: fan/2015, lee/2016, master/2017
- take mcts approach, but improve search:
 - use policy network to quickly make moves (test good moves rather than random ones)
 - use value network to predict winning odds (cheaper estimates for faster exploration)
 - finally, use mcts to perform deeper evaluation as needed

policy network

- human games (~150k) + supervised learning —> cnn policy network (given position, predict next move)
- use policy network + MCTS —> play more games (human + computer) —> train again —> better policy network (e.g. reinforcement learning)
- use policy network to make moves rapidly —>
 - \cdot 55% accuracy in 3ms, 24% accuracy in 2µs
 - policy network alone can defeat many engines*

value network

- from given input state, can we predict who will win, without performing a rollout simulation?
- build CNN to predict winning probability %
- train: mse between prediction and outcome
- overtrains to input games, so have to relax network (e.g. rotate/flip games)
- use value network to predict expected win/loss of moves without rollout (15000x faster)

alpha go: performance

alpha go: zero (2017)

- input a position —> use single network (combined policy + value) to predict best move and winning odds —> build game tree
- play games against self (tabula rasa), train new network to categorize wins/losses and reduce prediction error
- evaluate new network against old, pick winner
- repeat 700k generations —> master level play

<u>applied-data.science/blog/</u> <u>alphago-zero-cheat-sheet</u>

ALPHAGO ZERO CHEAT SHEET

The training pipeline for Alp	WHAT IS A 'GAME STATE'		
SELF PLAY Create a `training set'	RETRAIN NETWORK Optimise the network weights	EVALUATE NETWORK Test to see if the new network is stronger	1 if black stone here 0 if black stone not here 0 if black stone not here 1 1 1 1 black's stones 19
The best current player plays 25,000 games against itself See MCTS section to understand how AlphaGo Zero selects each move At each move, the following information is stored	A TRAINING LOOP Sample a mini-batch of 2048 positions from the last 500,000 games Retrain the current neural network on these positions - The game states are the input (see 'Deep Neural Network Architecture')	Play 400 games between the latest neural network and the current best neural network Both players use MCTS to select their moves, with their respective neural networks to evaluate leaf nodes	- and for the previous 7 time periods Current position of white's stones
$\pi \mathbf{Y}$	Loss Function Compares predictions from the neural network with the search probabilities and actual winner PREDICTIONS PREDICTIONS Mean-squared error	Latest player must win 55% of games to be declared the new best player	All 1 if black to play All 0 if white to play
I ne game state I he search probabilities I he winner (see 'What is a Game (from the MCTS) (+1 if this player wan, -1 if State section') this player lost - added once the game has finished)	+ Regularisation After every 1,000 training loops, evaluate the network		This stack is the input to the deep neural network

alpha go zero: train

rl v. sl + resnet v. cnn

end to end learning

How the model improves

		Random Moves
Game Start	Game End	_
		Meaningful Moves

Already dan level even if the opening doesn't make much sense.

pytorch Yuandong Tian talk (october 18)

alpha zero (dec 18)

- generalized version of alpha go approach (no gospecific knowledge)
- input board state, possible moves, evaluation function
 —> generates policy/value networks via self play
- teaches self how to play, improves to master level

alpha zero

Figure S1: Learning curves showing the Elo performance during training in Go. Comparison between AlphaZero, a version of AlphaZero that exploits knowledge of symmetries in a similar manner to AlphaGo Zero, and the previously published AlphaGo Zero. AlphaZero generates approximately 1/8 as many positions per training step, and therefore uses eight times more wall clock time, than the symmetry-augmented algorithms.

symmetries (inverse relaxation)

Fig. 3. Matches starting from the most popular human openings.

AlphaZero plays against (**A**) Stockfish in chess and (**B**) Elmo in shogi. In the left bar, AlphaZero plays white, starting from the given position; in the right bar, AlphaZero plays black. Each bar shows the results from AlphaZero's perspective: win (green), draw (gray), or loss (red). The percentage frequency of self-play training games in which this opening was selected by AlphaZero is plotted against the duration of training, in hours.

tic-tac-toe

- · github.com/suragnair/alpha-zero-general
- thanks Surag Nair, Evgeny Tyurin!
- input: board, moves, evaluate
- loop: play games against self, train (keras/ tensorflow) to recognize winners/minimize losses, evaluate new network, repeat
- alpha zero demo: play, train, test

- mcts (uct + rollouts) "solves" go, but doesn't scale
- combine expert knowledge (prior games) with value and policy networks (optimization) to surpass human players
- a single network randomly initialized can reach even greater performance via self-play
- this approach generalizes to other domains and is very human like

what is ai?

- chinese room example
- give beginner a board, rules, have them practice
- difference between master and beginner: knows what to seek, what to avoid —> they have experience
- casablanca: how many moves ahead do you think?

thanks for coming!

- Reinforcement Learning and Simulation-Based Search in Computer Go (2009)
- Mastering the game of Go with deep neural networks and tree search (2016)
- Mastering the game of Go without human knowledge (2017)
- A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play (2018)